Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chromosome Res ; 31(2): 14, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043046

RESUMO

Cellular quiescence is an important physiological state both in unicellular and multicellular eukaryotes. Quiescent cells are halted for proliferation and stop the cell cycle at the G0 stage. Using fission yeast as a model organism, we have previously found that several subunits of a conserved chromatin remodeling complex, Ino80C (INOsitol requiring nucleosome remodeling factor), are required for survival in quiescence. Here, we demonstrate that Ino80C has a key function in the regulation of gene expression in G0 cells. We show that null mutants for two Ino80C subunits, Iec1 and Ies2, a putative subunit Arp42, a null mutant for the histone variant H2A.Z, and a null mutant for the Inositol kinase Asp1 have very similar phenotypes in quiescence. These mutants show reduced transcription genome-wide and specifically fail to activate 149 quiescence genes, of which many are localized to the subtelomeric regions. Using spike in normalized ChIP-seq experiments, we show that there is a global reduction of H2A.Z levels in quiescent wild-type cells but not in iec1∆ cells and that a subtelomeric chromosome boundary element is strongly affected by Ino80C. Based on these observations, we propose a model in which Ino80C is evicting H2A.Z from chromatin in quiescent cells, thereby inactivating the subtelomeric boundary element, leading to a reorganization of the chromosome structure and activation of genes required to survive in quiescence.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Nucleossomos/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fatores de Transcrição/genética , Heterocromatina , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Blood ; 136(3): 339-352, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32232485

RESUMO

CCTC-binding factor (CTCF) is a key regulator of gene expression through organization of the chromatin structure. Still, it is unclear how CTCF binding is perturbed in leukemia or in cancer in general. We studied CTCF binding by chromatin immunoprecipitation sequencing in cells from patients with acute myeloid leukemia (AML) and in normal bone marrow (NBM) in the context of gene expression, DNA methylation, and azacitidine exposure. CTCF binding was increased in AML compared with NBM. Aberrant CTCF binding was enriched for motifs for key myeloid transcription factors such as CEBPA, PU.1, and RUNX1. AML with TET2 mutations was characterized by a particularly strong gain of CTCF binding, highly enriched for gain in promoter regions, while AML in general was enriched for changes at enhancers. There was a strong anticorrelation between CTCF binding and DNA methylation. Gain of CTCF occupancy was associated with increased gene expression; however, the genomic location (promoter vs distal regions) and enrichment of motifs (for repressing vs activating cofactors) were decisive for the gene expression pattern. Knockdown of CTCF in K562 cells caused loss of CTCF binding and transcriptional repression of genes with changed CTCF binding in AML, as well as loss of RUNX1 binding at RUNX1/CTCF-binding sites. In addition, CTCF knockdown caused increased differentiation. Azacitidine exposure caused major changes in CTCF occupancy in AML patient cells, partly by restoring a CTCF-binding pattern similar to NBM. We conclude that AML displays an aberrant increase in CTCF occupancy that targets key genes for AML development and impacts gene expression.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Metilação de DNA , DNA de Neoplasias/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Elementos de Resposta , Azacitidina/farmacologia , Fator de Ligação a CCCTC/genética , DNA de Neoplasias/genética , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas de Neoplasias/genética
3.
EMBO J ; 36(10): 1364-1378, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28438891

RESUMO

Cohesin mediates sister chromatid cohesion which is essential for chromosome segregation and repair. Sister chromatid cohesion requires an acetyl-transferase (Eso1 in fission yeast) counteracting Wpl1, promoting cohesin release from DNA We report here that Wpl1 anti-cohesion function includes an additional mechanism. A genetic screen uncovered that Protein Phosphatase 4 (PP4) mutants allowed cell survival in the complete absence of Eso1. PP4 co-immunoprecipitated Wpl1 and cohesin and Wpl1 triggered Rad21 de-phosphorylation in a PP4-dependent manner. Relevant residues were identified and mapped within the central domain of Rad21. Phospho-mimicking alleles dampened Wpl1 anti-cohesion activity, while alanine mutants were neutral indicating that Rad21 phosphorylation would shelter cohesin from Wpl1 unless erased by PP4. Experiments in post-replicative cells lacking Eso1 revealed two cohesin populations. Type 1 was released from DNA by Wpl1 in a PP4-independent manner. Type 2 cohesin, however, remained DNA-bound and lost its cohesiveness in a manner depending on Wpl1- and PP4-mediated Rad21 de-phosphorylation. These results reveal that Wpl1 antagonizes sister chromatid cohesion by a novel pathway regulated by the phosphorylation status of the cohesin kleisin subunit.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Deleção de Genes , Imunoprecipitação , Mutação , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
4.
EMBO Rep ; 20(10): e48111, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31468675

RESUMO

The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity. Affinity-purified CLRC ubiquitylates histone H3, and mass spectrometric and mutation analyses reveal that H3 lysine 14 (H3K14) is the preferred target of the complex. Chromatin immunoprecipitation analysis shows that H3K14 ubiquitylation (H3K14ub) is closely associated with H3K9me-enriched chromatin. Notably, the CLRC-mediated H3 ubiquitylation promotes H3K9me by Clr4, suggesting that H3 ubiquitylation is intimately linked to the establishment and/or maintenance of H3K9me. These findings demonstrate a cross-talk mechanism between histone ubiquitylation and methylation that is involved in heterochromatin assembly.


Assuntos
Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Histonas/química , Metilação , Metiltransferases/metabolismo , Mutação/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Nucleic Acids Res ; 47(4): 1671-1691, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30566651

RESUMO

Fission yeast, Schizosaccharomyces pombe, is an attractive model organism for transcriptional and chromatin biology research. Such research is contingent on accurate annotation of transcription start sites (TSSs). However, comprehensive genome-wide maps of TSSs and their usage across commonly applied laboratory conditions and treatments for S. pombe are lacking. To this end, we profiled TSS activity genome-wide in S. pombe cultures exposed to heat shock, nitrogen starvation, hydrogen peroxide and two commonly applied media, YES and EMM2, using Cap Analysis of Gene Expression (CAGE). CAGE-based annotation of TSSs is substantially more accurate than existing PomBase annotation; on average, CAGE TSSs fall 50-75 bp downstream of PomBase TSSs and co-localize with nucleosome boundaries. In contrast to higher eukaryotes, dispersed TSS distributions are not common in S. pombe. Our data recapitulate known S. pombe stress expression response patterns and identify stress- and media-responsive alternative TSSs. Notably, alteration of growth medium induces changes of similar magnitude as some stressors. We show a link between nucleosome occupancy and genetic variation, and that the proximal promoter region is genetically diverse between S. pombe strains. Our detailed TSS map constitutes a central resource for S. pombe gene regulation research.


Assuntos
Schizosaccharomyces/genética , Estresse Fisiológico/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Cromatina/genética , Mapeamento Cromossômico , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/efeitos dos fármacos , Genoma Fúngico/genética , Peróxido de Hidrogênio/farmacologia , Nitrogênio/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Inanição/genética , Estresse Fisiológico/efeitos dos fármacos
6.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670267

RESUMO

The Helicase-related protein 3 (Hrp3), an ATP-dependent chromatin remodeling enzyme from the CHD family, is crucial for maintaining global nucleosome occupancy in Schizosaccharomyces pombe (S. pombe). Although the ATPase domain of Hrp3 is essential for chromatin remodeling, the contribution of non-ATPase domains of Hrp3 is still unclear. Here, we investigated the role of non-ATPase domains using in vitro methods. In our study, we expressed and purified recombinant S. pombe histone proteins, reconstituted them into histone octamers, and assembled nucleosome core particles. Using reconstituted nucleosomes and affinity-purified wild type and mutant Hrp3 from S. pombe we created a homogeneous in vitro system to evaluate the ATP hydrolyzing capacity of truncated Hrp3 proteins. We found that all non-ATPase domain deletions (∆chromo, ∆SANT, ∆SLIDE, and ∆coupling region) lead to reduced ATP hydrolyzing activities in vitro with DNA or nucleosome substrates. Only the coupling region deletion showed moderate stimulation of ATPase activity with the nucleosome. Interestingly, affinity-purified Hrp3 showed co-purification with all core histones suggesting a strong association with the nucleosomes in vivo. However, affinity-purified Hrp3 mutant with SANT and coupling regions deletion showed complete loss of interactions with the nucleosomes, while SLIDE and chromodomain deletions reduced Hrp3 interactions with the nucleosomes. Taken together, nucleosome association and ATPase stimulation by DNA or nucleosomes substrate suggest that the enzymatic activity of Hrp3 is fine-tuned by unique contributions of all four non-catalytic domains.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Deleção de Sequência
7.
Hum Genomics ; 13(1): 54, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699156

RESUMO

BACKGROUND: The heat-shock transcription factor 1 (HSF1) has been linked to cell proliferation and survival in cancer and has been proposed as a biomarker for poor prognosis. Here, we assessed the role of HSF1 expression in relation to copy number alteration (CNA) and cancer prognosis. METHODS: Using 10,287 cancer genomes from The Cancer Genome Atlas and Cbioportal databases, we assessed the association of HSF1 expression with CNA and cancer prognosis. CNA of 8q24.3 was categorized as diploid (reference), deletion (fewer copies), gain (+ 1 copy) and amplification (≥ + 2 copies). Multivariate logistic regression modeling was used to assess 5-year survival among those with a first cancer diagnosis and complete follow-up data (N = 9568), categorized per anatomical location and histology, assessing interaction with tumor stage, and expressed as odds ratios and 95% confidence intervals. RESULTS: We found that only 54.1% of all tumors have a normal predicted 8q24.3 copy number and that 8q24.3 located genes including HSF1 are mainly overexpressed due to increased copies number of 8q24.3 in different cancers. The tumor of patients having respectively gain (+ 1 copy) and amplification (≥ + 2 copies) of 8q24.3 display a global increase of 5-year mortality (odds ratio = 1.98, 95% CI 1.22-3.21) and (OR = 2.19, 1.13-4.26) after full adjustment. For separate cancer types, tumor patients with 8q24.3 deletion showed a marked increase of 5-year mortality in uterine (OR = 4.84, [2.75-8.51]), colorectal (OR = 4.12, [1.15-14.82]), and ovarian (OR = 1.83, [1.39-2.41]) cancers; and decreased mortality in kidney cancer (OR = 0.41, [0.21-0.82]). Gain of 8q24.3 resulted in significant mortality changes in 5-year mortality for cancer of the uterus (OR = 3.67, [2.03-6.66]), lung (OR = 1.76, [1.24-2.51]), colorectal (OR = 1.75, [1.32-2.31]) cancers; and amplification for uterine (OR = 4.58, [1.43-14.65]), prostate (OR = 4.41 [3.41-5.71]), head and neck (OR = 2.68, [2.17-3.30]), and stomach (OR = 0.56, [0.36-0.87]) cancers. CONCLUSIONS: Here, we show that CNAs of 8q24.3 genes, including HSF1, are tightly linked to 8q24.3 copy number in tumor patients and can affect patient outcome. Our results indicate that the integration of 8q24.3 CNA detection may be a useful predictor for cancer prognosis.


Assuntos
Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA/genética , Fatores de Transcrição de Choque Térmico/genética , Neoplasias/genética , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Resultado do Tratamento
8.
Nucleic Acids Res ; 46(22): e135, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30215776

RESUMO

Analysis of large-scale interphase genome positioning with reference to a nuclear landmark has recently been studied using sequencing-based single cell approaches. However, these approaches are dependent upon technically challenging, time consuming and costly high throughput sequencing technologies, requiring specialized bioinformatics tools and expertise. Here, we propose a novel, affordable and robust microscopy-based single cell approach, termed Topokaryotyping, to analyze and reconstruct the interphase positioning of genomic loci relative to a given nuclear landmark, detectable as banding pattern on mitotic chromosomes. This is accomplished by proximity-dependent histone labeling, where biotin ligase BirA fused to nuclear envelope marker Emerin was coexpressed together with Biotin Acceptor Peptide (BAP)-histone fusion followed by (i) biotin labeling, (ii) generation of mitotic spreads, (iii) detection of the biotin label on mitotic chromosomes and (iv) their identification by karyotyping. Using Topokaryotyping, we identified both cooperativity and stochasticity in the positioning of emerin-associated chromatin domains in individual cells. Furthermore, the chromosome-banding pattern showed dynamic changes in emerin-associated domains upon physical and radiological stress. In summary, Topokaryotyping is a sensitive and reliable technique to quantitatively analyze spatial positioning of genomic regions interacting with a given nuclear landmark at the single cell level in various experimental conditions.


Assuntos
Cariotipagem/métodos , Mitose , Membrana Nuclear/metabolismo , Análise de Célula Única/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Interfase , Proteínas de Membrana/metabolismo , Microscopia Confocal , Membrana Nuclear/genética , Proteínas Nucleares/metabolismo , Reprodutibilidade dos Testes
9.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260998

RESUMO

Cellular quiescence is a reversible differentiation state when cells are changing the gene expression program to reduce metabolic functions and adapt to a new cellular environment. When fission yeast cells are deprived of nitrogen in the absence of any mating partner, cells can reversibly arrest in a differentiated G0-like cellular state, called quiescence. This change is accompanied by a marked alteration of nuclear organization and a global reduction of transcription. Using high-throughput flow cytometry combined with genetic analysis, we describe the results of a comprehensive screen for genes encoding chromatin components and regulators that are required for the entry and the maintenance of cellular quiescence. We show that the histone acetylase and deacetylase complexes, SAGA and Rpd3, have key roles both for G0 entry and survival during quiescence. We reveal a novel function for the Ino80 nucleosome remodeling complex in cellular quiescence. Finally, we demonstrate that components of the MRN complex, Rad3, the nonhomologous end-joining, and nucleotide excision DNA repair pathways are essential for viability in G0.


Assuntos
Ciclo Celular/genética , Cromatina/metabolismo , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Sobrevivência Celular , Análise por Conglomerados , Reparo do DNA/genética , Histonas/metabolismo , Modelos Biológicos , Mutação/genética , Dinâmica não Linear , Fenótipo
10.
Blood ; 129(7): e13-e25, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28003272

RESUMO

Acute myeloid leukemia (AML) is characterized by an impaired differentiation process leading to an accumulation of immature blasts in the blood. One feature of cytogenetically normal AML is alterations to the DNA methylome. We analyzed 57 AML patients with normal karyotype by using Illumina's 450k array and showed that aberrant DNA methylation is significantly altered at enhancer regions and that the methylation levels at specific enhancers predict overall survival of AML patients. The majority of sites that become differentially methylated in AML occur in regulatory elements of the human genome. Hypermethylation associates with enhancer silencing. In addition, chromatin immunoprecipitation sequencing analyses showed that a subset of hypomethylated sites correlate with enhancer activation, indicated by increased H3K27 acetylation. DNA hypomethylation is therefore not sufficient for enhancer activation. Some sites of hypomethylation occur at weak/poised enhancers marked with H3K4 monomethylation in hematopoietic progenitor cells. Other hypomethylated regions occur at sites inactive in progenitors and reflect the de novo acquisition of AML-specific enhancers. Altered enhancer dynamics are reflected in the gene expression of enhancer target genes, including genes involved in oncogenesis and blood cell development. This study demonstrates that histone variants and different histone modifications interact with aberrant DNA methylation and cause perturbed enhancer activity in cytogenetically normal AML that contributes to a leukemic transcriptome.


Assuntos
Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Medula Óssea/metabolismo , Medula Óssea/patologia , Elementos Facilitadores Genéticos , Código das Histonas , Histonas/genética , Humanos , Leucemia Mieloide Aguda/patologia , Regiões Promotoras Genéticas , Transcriptoma
11.
Nucleic Acids Res ; 45(9): 5153-5169, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28334749

RESUMO

Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease. In addition, it has been suggested that the muHTT transcript contributes to the toxicity. Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT knock-down of both mRNA and protein was successfully achieved. Diminished phosphorylation of HTT gene-associated RNA-polymerase II is demonstrated, suggestive of reduced transcription downstream the ON-targeted repeat. Different backbone chemistries were found to have a strong impact on the ON efficiency. We also successfully use different delivery vehicles as well as naked uptake of the ONs, demonstrating versatility and possibly providing insights for in vivo applications.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Proteína Huntingtina/genética , Oligonucleotídeos Fosforotioatos/farmacologia , Expansão das Repetições de Trinucleotídeos/genética , Alelos , DNA/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteína Huntingtina/metabolismo , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapeamento por Restrição , Raios Ultravioleta
12.
Genome Res ; 25(6): 872-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25778913

RESUMO

Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.


Assuntos
Genoma Fúngico , Histonas/genética , Nucleossomos/genética , Schizosaccharomyces/genética , Imunoprecipitação da Cromatina , Replicação do DNA , Bases de Dados Genéticas , Estudos de Associação Genética , Histonas/metabolismo , Metilação , Análise em Microsséries , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/metabolismo
13.
EMBO Rep ; 17(5): 753-68, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902262

RESUMO

Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.


Assuntos
Regulação da Expressão Gênica , Retroelementos , Sítio de Iniciação de Transcrição , Sequência de Bases , Catálise , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Modelos Biológicos , Mutação , Nucleossomos , Fenótipo , Estresse Fisiológico , Sequências Repetidas Terminais , Ativação Transcricional
14.
PLoS Genet ; 11(3): e1005101, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25798942

RESUMO

In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Schizosaccharomyces pombe/genética , Telômero/genética , Transcrição Gênica , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação Fúngica da Expressão Gênica , Elementos Isolantes/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Nucleossomos/genética , RNA de Transferência/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/biossíntese , Sequências Repetidas Terminais/genética
15.
EMBO Rep ; 16(12): 1673-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518661

RESUMO

The maintenance of open and repressed chromatin states is crucial for the regulation of gene expression. To study the genes involved in maintaining chromatin states, we generated a random mutant library in Schizosaccharomyces pombe and monitored the silencing of reporter genes inserted into the euchromatic region adjacent to the heterochromatic mating type locus. We show that Leo1-Paf1 [a subcomplex of the RNA polymerase II-associated factor 1 complex (Paf1C)] is required to prevent the spreading of heterochromatin into euchromatin by mapping the heterochromatin mark H3K9me2 using high-resolution genomewide ChIP (ChIP-exo). Loss of Leo1-Paf1 increases heterochromatin stability at several facultative heterochromatin loci in an RNAi-independent manner. Instead, deletion of Leo1 decreases nucleosome turnover, leading to heterochromatin stabilization. Our data reveal that Leo1-Paf1 promotes chromatin state fluctuations by enhancing histone turnover.


Assuntos
Cromatina/genética , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Heterocromatina/metabolismo , Código das Histonas , Histonas/genética , Mutação , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Interferência de RNA
16.
EMBO J ; 31(23): 4388-403, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23103765

RESUMO

Nucleosome positioning governs access to eukaryotic genomes. Many genes show a stereotypic organisation at their 5'end: a nucleosome free region just upstream of the transcription start site (TSS) followed by a regular nucleosomal array over the coding region. The determinants for this pattern are unclear, but nucleosome remodelers are likely critical. Here we study the role of remodelers in global nucleosome positioning in S. pombe and the corresponding changes in expression. We find a striking evolutionary shift in remodeler usage between budding and fission yeast. The S. pombe RSC complex does not seem to be involved in nucleosome positioning, despite its prominent role in S. cerevisiae. While S. pombe lacks ISWI-type remodelers, it has two CHD1-type ATPases, Hrp1 and Hrp3. We demonstrate nucleosome spacing activity for Hrp1 and Hrp3 in vitro, and that together they are essential for linking regular genic arrays to most TSSs in vivo. Impaired arrays in the absence of either or both remodelers may lead to increased cryptic antisense transcription, but overall gene expression levels are only mildly affected.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA Helicases/química , Proteínas de Ligação a DNA/química , Dactinomicina/farmacologia , Deleção de Genes , Histonas/química , Modelos Biológicos , Mutação , Oligonucleotídeos Antissenso/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Transcrição Gênica , Transcriptoma
17.
Blood ; 123(17): e46-57, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24671951

RESUMO

Hematopoietic differentiation is governed by a complex regulatory program controlling the generation of different lineages of blood cells from multipotent hematopoietic stem cells. The transcriptional program that dictates hematopoietic cell fate and differentiation requires an epigenetic memory function provided by a network of epigenetic factors regulating DNA methylation, posttranslational histone modifications, and chromatin structure. Aberrant interactions between epigenetic factors and transcription factors cause perturbations in the blood cell differentiation program that result in various types of hematopoietic disorders. To elucidate the contributions of different epigenetic factors in human hematopoiesis, high-throughput cap analysis of gene expression was used to build transcription profiles of 199 epigenetic factors in a wide range of blood cells. Our epigenetic transcriptome analysis revealed cell type- (eg, HELLS and ACTL6A), lineage- (eg, MLL), and/or leukemia- (eg, CHD2, CBX8, and EPC1) specific expression of several epigenetic factors. In addition, we show that several epigenetic factors use alternative transcription start sites in different cell types. This analysis could serve as a resource for the scientific community for further characterization of the role of these epigenetic factors in blood development.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Hematopoese/genética , Hematopoese/fisiologia , Diferenciação Celular , Linhagem da Célula , Metilação de DNA , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Análise de Componente Principal , Transcrição Gênica
18.
Blood ; 123(17): e79-89, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24671952

RESUMO

In development, epigenetic mechanisms such as DNA methylation have been suggested to provide a cellular memory to maintain multipotency but also stabilize cell fate decisions and direct lineage restriction. In this study, we set out to characterize changes in DNA methylation and gene expression during granulopoiesis using 4 distinct cell populations ranging from the oligopotent common myeloid progenitor stage to terminally differentiated neutrophils. We observed that differentially methylated sites (DMSs) generally show decreased methylation during granulopoiesis. Methylation appears to change at specific differentiation stages and overlap with changes in transcription and activity of key hematopoietic transcription factors. DMSs were preferentially located in areas distal to CpG islands and shores. Also, DMSs were overrepresented in enhancer elements and enriched in enhancers that become active during differentiation. Overall, this study depicts in detail the epigenetic and transcriptional changes that occur during granulopoiesis and supports the role of DNA methylation as a regulatory mechanism in blood cell differentiation.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Granulócitos/citologia , Transcriptoma , Diferenciação Celular , Separação Celular , Ilhas de CpG , Citosina/metabolismo , Epigênese Genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Humanos , Neutrófilos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
19.
PLoS Genet ; 9(3): e1003371, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516381

RESUMO

Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1) at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1) occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1) at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1) in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1) nucleosomes.


Assuntos
Centrômero , Proteínas Cromossômicas não Histona , DNA Helicases , DNA Topoisomerases Tipo I , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrômero/genética , Centrômero/ultraestrutura , Cromatina/genética , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga , Cinetocoros/ultraestrutura , Nucleossomos/genética , Rad51 Recombinase/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
PLoS Genet ; 8(9): e1002985, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028377

RESUMO

Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-A(Cnp1) deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-A(Cnp1) incorporation at non-centromeric sites. FACT has little or no effect on CENP-A(Cnp1) assembly at endogenous centromeres where CENP-A(Cnp1) is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-A(Cnp1) at specific loci, including subtelomeric regions, where CENP-A(Cnp1) is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-A(Cnp1) chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-A(Cnp1) to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-A(Cnp1) chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification.


Assuntos
Aminopeptidases/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Chaperonas Moleculares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Transcrição Gênica , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Epigênese Genética , Heterocromatina/genética , Histonas/genética , Cinetocoros , Nucleossomos/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA