Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2122053120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252969

RESUMO

The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17ß-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17ß-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17ß-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
2.
J Biochem Mol Toxicol ; 38(9): e23815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39171650

RESUMO

Drug transporters play a pivotal role in modulating drug disposition and are subject to alterations under inflammatory conditions. This study aimed to elucidate the intricate expression patterns of drug transporters during both acute and chronic inflammation, which are closely linked to malignant transformation. To investigate acute inflammation, we employed an in vitro model by subjecting Caco-2 cells to various inflammatory stimuli (IL-1ß, TNF-α, or LPS) individually or in combination. The successful induction of inflammation was confirmed by robust increases in IL-6 and NO production. Notably, inflamed Caco-2 cells exhibited significantly diminished levels of ABCB1 and ABCG2, while the expression of ABCC2 was upregulated. For chronic inflammation induction in vivo, we employed the well-established AOM/DSS mouse model known for its association with colitis-driven tumorigenesis. Persistent inflammation was effectively monitored throughout the experiment via elevated IL-6 and NO levels. The sequential stages of tumorigenesis were confirmed through Ki-67 immunohistochemistry. Intriguingly, we observed gradual alterations in the expression patterns of the studied drug transporters during stepwise induction, with ABCB1, ABCG2, and ABCC1 showing downregulation and ABCC2 exhibiting upregulation. Immunohistochemistry further revealed dynamic changes in the expression of ABCB1 and ABCC2 during the induction cycles, closely paralleling the gradual increase in Ki-67 expression observed during the development of precancerous lesions. Collectively, our findings underscore the significant impact of inflammation on drug transporter expression, potentially influencing the process of malignant transformation of the colon.


Assuntos
Azoximetano , Neoplasias do Colo , Inflamação , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Animais , Células CACO-2 , Camundongos , Azoximetano/toxicidade , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Carcinogênese/metabolismo , Carcinogênese/induzido quimicamente , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Interleucina-6/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Masculino
3.
J Pharmacol Exp Ther ; 384(1): 35-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809898

RESUMO

MicroRNAs (miRNAs) are involved in the development of human malignancies, and cells have the ability to secrete these molecules into extracellular compartments. Thus, cell-free miRNAs (circulating miRNAs) can potentially be used as biomarkers to evaluate pathophysiological changes. Although circulating miRNAs have been proposed as potential noninvasive tumor biomarkers for diagnosis, prognosis, and response to therapy, their routine application in the clinic is far from being achieved. This review focuses on the recent progress regarding the value of circulating miRNAs as noninvasive biomarkers, with specific consideration of their relevant clinical applications. In addition, we provide an in-depth analysis of the technical challenges that impact the assessment of circulating miRNAs. We also highlight the significance of integrating circulating miRNAs with the standard laboratory biomarkers to boost sensitivity and specificity. The current status of circulating miRNAs in clinical trials as tumor biomarkers is also covered. These insights and general guidelines will assist researchers in experimental practice to ensure quality standards and repeatability, thus improving future studies on circulating miRNAs. SIGNIFICANCE STATEMENT: Our review will boost the knowledge behind the inconsistencies and contradictory results observed among studies investigating circulating miRNAs. It will also provide a solid platform for better-planned strategies and standardized techniques to optimize the assessment of circulating cell-free miRNAs.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Neoplasias , Humanos , Biomarcadores Tumorais/sangue , MicroRNA Circulante/sangue , Neoplasias/sangue , Neoplasias/diagnóstico , Prognóstico
4.
Prostaglandins Other Lipid Mediat ; 166: 106730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931593

RESUMO

As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17ß-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κß), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, ß) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, ß compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.


Assuntos
Cucurbita , Terapia de Reposição de Estrogênios , Feminino , Estradiol/farmacologia , Estrogênios/farmacologia , Pós-Menopausa , Animais , Ratos
5.
Cell Biochem Funct ; 41(3): 331-343, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36861261

RESUMO

Hepatocellular carcinoma (HCC) progresses sequentially in a stepwise pattern. Long noncoding RNA (lncRNA) can regulate the complex cascade of hepatocarcinogenesis. Our study aimed to elucidate the expression profile of H19 and MALAT1 during the different stages of hepatocarcinogenesis and the correlation between H19 and MALAT1 with the genes implicated in the carcinogenesis cascade. We employed a chemically induced hepatocarcinogenesis murine model to mimic the successive stages of human HCC development. Using real-time PCR, we analyzed the expression patterns of H19 and MALAT1, as well as the expression of biomarkers implicated in the Epithelial-Mesenchymal transition (EMT). The protein expression of the mesenchymal marker vimentin was also evaluated using immunohistochemistry in the stepwise induced stages. The histopathological evaluation of the liver tissue sections revealed significant changes during the experiment, with HCC developing at the final stage. Throughout the stages, there was a dynamic significant increase in the expression of H19 and MALAT1 compared to the normal control. Nevertheless, there was no significant difference between each stage and the preceding one. The tumor progression biomarkers (Matrix Metalloproteinases, vimentin, and ß-catenin) exhibited the same trend of steadily increasing levels. However, in the case of Zinc finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2), the significant elevation was only detected at the last stage of induction. The correlation between lncRNAs and the tumor progression biomarkers revealed a strong positive correlation between the expression pattern of H19 and MALAT1 with Matrix Metalloproteinases 2 and 9 and vimentin. Our findings imply that genetic and epigenetic alterations influence HCC development in a stepwise progressive pattern.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Vimentina/genética , Vimentina/metabolismo
6.
Environ Toxicol ; 37(2): 212-223, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34655286

RESUMO

BACKGROUND: α-Solanine is a natural toxic glycoalkaloid produced in some species of the Solanaceae family with antiproliferative activity in various cancers. OBJECTIVE: This study aimed to investigate the effect of α-solanine on the oxidative stress status in human hepatocellular carcinoma HepG2 cells and to evaluate its influence on microRNAs (miRNAs) associated with oxidative stress and NF-κB regulation. METHODS: The prooxidant effect of α-solanine was tested by the decay rate of the fluorescent probe, ß-phycoerythrin, and by measuring malondialdehyde, reduced Glutathione, catalase, and superoxide dismutase following treatment of HepG2 cells with low doses of α-solanine. Immunocytochemical techniques were used to detect mitochondrial membrane potential (ΔΨm) and NF-κB protein. The gene expression of NF-κB and miRNAs was evaluated by real-time PCR. RESULTS: α-Solanine is a prooxidant that causes a rapid decay in the fluorescence intensity of ß-phycoerythrin. It induces oxidative stress-related alterations such as increased lipid peroxidation and reduced antioxidant markers. Oxidative stress induced by α-solanine was mediated by decreased ΔΨm, increased NF-κB expression, upregulation of miRNAs that control oxidative stress by regulating the NF-κB pathway, and downregulation of oncogenic miRNAs that inhibit the NF-κB pathway. CONCLUSION: α-Solanine-induced oxidative stress is mediated by alterations in the NF-κB pathway with a detected crosstalk between α-solanine treatment and the expression of oxidative stress-responsive miRNAs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Estresse Oxidativo , Apoptose , Carcinoma Hepatocelular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Solanina
7.
Prostaglandins Other Lipid Mediat ; 155: 106566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048868

RESUMO

The role of glucose transporters (GLUTs) in diabetes mellitus has become more prominent as a possible therapeutic target. In the present study, we aimed to compare the effect of zinc oxide nanoparticles (ZnONPs), silver nanoparticles (AgNPs), and docosahexaenoic acid (DHA) alone or loaded in ZnONPs or AgNPs on insulin signaling pathway and GLUTs expression in diabetic rats. In the experimental part, rats were divided into seven groups; control, diabetic, and the other five groups were diabetic received different treatments. Fasting blood sugar (FBS), serum level of insulin, insulin resistance (IR), and serum level of phosphatidylinositol 3-kinase (PI3K) were evaluated. In addition, insulin expression in pancreatic islets was assessed by immunohistochemical analysis, and the expression of liver GLUTs 1, 2, and 4 and liver insulin receptor substrate-1 (IRS-1) was evaluated by real-time polymerase chain reactions (RT-PCR). The results of the current study showed that ZnONPs, AgNPs, and DHA alone or loaded in ZnONPs or AgNPs attenuated levels of FBS, insulin and decreased IR in diabetic rats through enhancing the expression of GLUTs as well as IRS-1 and PI3K. Furthermore, AgNPs loaded with DHA showed the most significance with high comparability to the control group. In conclusion, this study elucidated the role of GLUTs and IRS-1 in diabetes and introduced novel characteristics of ZnONPs, AgNPs, and DHA alone or loaded in ZnONPs or AgNPs as a therapeutic modality to activate GLUTs and IRS1, which may be beneficial for diabetic patients with IR.


Assuntos
Óxido de Zinco
8.
Mol Biol Rep ; 48(10): 6845-6855, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476740

RESUMO

BACKGROUND: Nuclear factor-κB (NF-κB) has been identified as the major link between inflammation and cancer. Natural agents that inhibit this pathway are essential in attenuating inflammation induced by cancer or chemotherapeutic drugs. High intake of Brassicaceae vegetables has been determined to modulate essential pathways related to chronic diseases. In this study, we investigated the anti-proliferative and anti-inflammatory effects of the indole glucosinolates; indole-3-carbinol (I3C) and its metabolite 3,3-diindolylmethane (DIM) on the inflammatory biomarkers and miRNAs controlling the NF-κB pathway. METHODS AND RESULTS: In our study, we inoculated Ehrlich ascites carcinoma (EAC) cells in female albino mice, which increased their packed cell volume and induced a significant increase in the levels of several cytokines and inflammatory biomarkers (NF-κB IL-6, IL-1b, TNF-α, and NO). A significant elevation in inflammatory-medicated miRNAs (miR-31 and miR-21) was also noted. Treatment with 5-fluorouracil (5-FU) significantly reduced packed cell volume and viable cell count. However, it was accompanied by a significant increase in the levels of inflammatory markers and expression of miR-31 and miR-21. Nevertheless, although treatment with indoles (I3C and DIM) significantly reduced the packed cell volume and viable cell count, their prominent effect was the marked reduction of all inflammatory biomarkers compared to both the EAC untreated group and the EAC group treated with 5-FU. Moreover, the anti-inflammatory effect of I3C or DIM was accompanied by a significant decrease in the expression of miR-31 and miR-21. CONCLUSION: Our findings have; therefore, revealed that I3C and DIM have strong anti-inflammatory effects, implying that their use as a co-treatment with chemotherapeutic drugs can effectively improve the anti-tumor effect of chemotherapeutic drugs.


Assuntos
Anti-Inflamatórios/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma de Ehrlich/genética , Glucosinolatos/uso terapêutico , Indóis/uso terapêutico , Inflamação/genética , MicroRNAs/genética , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores Tumorais/sangue , Peso Corporal/efeitos dos fármacos , Carcinoma de Ehrlich/sangue , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucosinolatos/farmacologia , Indóis/farmacologia , Inflamação/sangue , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo
9.
Int J Mol Sci ; 21(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403283

RESUMO

An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Microambiente Tumoral/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Proliferação de Células/genética , Vesículas Extracelulares/genética , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Linfoma Difuso de Grandes Células B/diagnóstico , Prognóstico
10.
J Cell Biochem ; 120(10): 16668-16680, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31095784

RESUMO

Early detection of colorectal cancer and monitoring the progress in colon carcinogenesis stages is essential to reduce mortality. Therefore, there is continuous search for noninvasive biomarkers with high stability and good sensitivity and specificity. miRNAs have attracted attention as promising biomarkers as they are stably expressed in circulation. The aim of our study is to evaluate the aberrant expression of circulating miRNAs during the stepwise progress of colitis-associated colon cancer. This was accomplished through assessing the expression levels of five miRNAs (miR-141, miR-15b, miR-17-3p, miR-21, and miR-29a) in serum and their corresponding tissue samples through the different cycles of colorectal carcinogenesis cascade using the azoxymethane/dextran sulfate sodium murine model. We also compared the diagnostic performance of these selected miRNAs with the conventional tumor biomarkers CEA and CA 19-9. The results of our study revealed that the expression levels of those miRNAs were dynamically changing in accordance with the tumor development state. Moreover, their aberrant expression in serum was statistically correlated with that in tissue. Our data also revealed that serum miR-15b, miR-21, and miR-29a showed the best performance in terms of diagnostic power. Our findings highlight the efficiency of these circulating miRNAs not only for early diagnostics purposes, but also for monitoring progress in the colorectal carcinogenesis process, and therefore encouraging integrating these noninvasive biomarkers into the clinical diagnostic settings beside the traditional diagnostic markers for accurate screening of the early progress of colon carcinogenesis.


Assuntos
MicroRNA Circulante/sangue , Colite , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Neoplasias Experimentais , Animais , Azoximetano/toxicidade , Colite/sangue , Colite/induzido quimicamente , Colite/complicações , Colite/diagnóstico , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etiologia , Sulfato de Dextrana/toxicidade , Masculino , Camundongos , Neoplasias Experimentais/sangue , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/etiologia
11.
Mol Cell Probes ; 47: 101442, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31479716

RESUMO

Inflammatory bowel disease (IBD) is mostly responsible for the development of colitis-associated colon cancer. Of the several signaling pathways involved in colonic inflammation, the activation and crosstalk between NF-κB and STAT3 serve as the pivotal regulatory hubs that regulate epithelial tumorigenesis by linking inflammation with cancer development. Understanding the molecular mechanisms regulating the crosstalk between NF-κB and STAT3 will help in targeting these signaling pathways and halt epithelial tumorigenesis. MicroRNAs (miRNAs) play important role in the regulation of NF-κB and STAT3 and function in a positive- or negative feedback loop to regulate the crosstalk of these transcription factor. In the present study we evaluated the aberrant expression of a selected panel of miRNAs (miR-181b, miR-31, miR-34a, miR-146b, miR-221, and miR-155) that regulate the crosstalk between NF-κB and STAT3 during colitis-associated tumorigenesis. We used the stepwise colorectal carcinogenesis murine model known as Azoxymethane (AOM)/Dextran sodium sulphate (DSS) to recapitulate the different stages of tumorigenesis. Our results revealed that the expression of the selected miRNAs changed dynamically in a stepwise pattern as colonic tissue transforms from normal to actively inflamed to neoplastic state, in accordance with the gradual activation of NF-κB and STAT3, suggesting that the aberrant expression of these miRNAs could function as the epigenetic switch between inflammation and colorectal tumorigenesis. We were able to elucidate the contribution of miRNAs in the NF-κB - STAT3 crosstalk during the stepwise development of colitis-associated carcinoma, and this could improve our understanding of the molecular pathology of colorectal tumorigenesis and even suggesting a therapeutic strategy by modulating the expression of these regulating miRNAs.


Assuntos
Colite/induzido quimicamente , Neoplasias Colorretais/genética , MicroRNAs/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Azoximetano/efeitos adversos , Colite/complicações , Colite/genética , Colite/metabolismo , Neoplasias Colorretais/etiologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transdução de Sinais
12.
J Appl Biomed ; 17(1): 11, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34907752

RESUMO

Cancer immunotherapy offers tremendous clinical outcomes in cancer management with the potential to induce sustained remission in patients with refractory disease. One of these immunotherapy modalities is the adoptive transfer of autologous T-cells that are genetically engineered ex vivo to express chimeric antigen receptors (CARs). These receptors can direct T-cells to the surface antigens of tumor cells to initiate an efficient and specific cytotoxic response against tumor cells. This review elucidates the structural features of CAR T-cells and their different generations reaching the recent 4th generation (TRUCK). The step-wise treatment process using CAR T-cell therapy and some of the updated prominent clinical applications of this treatment modality in both hematologic and solid malignancies are also covered in the present review. The success of CAR T-cell therapy is still encountered by several limitations for a widespread clinical application of this treatment modality, these challenges along with the recent innovative strategies that have been developed to overcome such drawbacks, as well as, the approaches and future directions aiming for a commercial low cost CAR T-cell immunotherapy modality, are all covered in the present review.

13.
Life Sci ; 315: 121320, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574946

RESUMO

AIMS: 5-Fluorouracil (5-FU) represents the cornerstone for colorectal cancer therapy. However, resistance to its action is a major hindrance. This study aimed to investigate the effectiveness of suppressing the activity of PI3K/Akt/mTOR signaling pathway on the chemosensitivity of colorectal cancer cells to 5-FU, as well as to delineate the possible underlying cellular mechanisms and the expected modulation in the expression of specific ABC drug transporters. MAIN METHODS: HCT116 and Caco-2 cells were incubated with 5-FU, LY294002, or PI-103 individually or in combination. Cell viability was monitored using MTT assay. The expression of a panel of drug transporters was evaluated by RT-PCR. Immunofluorescence staining was applied to evaluate the expression pattern of phospho-AKT, phospho-mTOR, and ABGG2. HPLC evaluated the enhancement in the 5-FU cellular uptake. Cell apoptosis was detected by flow cytometry, and cell morphological changes following treatment were inspected under a fluorescence microscope. Additionally, the migration ability of cells following our suggested treatment combination was examined by wound healing assay. KEY FINDINGS: The results reveal a notable enhancement in the cytotoxicity of a low dose of 5-FU when combined with a PI3K inhibitor (LY294002 or PI-103). This enhancement was influenced by the significant reduction in the expression of p-AKT and p-mTOR and was also mediated by a significant suppression in the expression of ABCG2 and ABCC5. Consequently, we detected an increase in the cellular uptake and concentration of 5-FU in cells treated with this combination rather than a single 5-FU treatment. Our Suggested combination treatment also induced cell apoptosis and reduced the migration ability of cells. SIGNIFICANCE: Our data provide evidence that survival signaling pathways represent distinctive targets for the enhancement of chemotherapeutic sensitivity. The antitumor efficacy of 5-FU is enhanced when combined with a PI3K inhibitor, and this effect was mediated by alterations in the expression of specific drug transporters.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células CACO-2 , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Transportadores de Cassetes de Ligação de ATP , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células
14.
J Cancer Res Clin Oncol ; 149(8): 5437-5451, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36459290

RESUMO

OBJECTIVE: Breast cancer (BC) is one of the most commonly diagnosed solid malignancies in women worldwide. PURPOSE: Finding new non-invasive circulating diagnostic biomarkers will facilitate the early prediction of BC and provide valuable insight into disease progression and response to therapy using a safe and more accessible approach available every inspection time. Therefore, our present study aimed to investigate expression patterns of potentially circulating biomarkers that can differentiate well between benign, malignant, and healthy subjects. METHODS: To achieve our target, quantitative analyses were performed for some circulating biomarkers which have a role in the proliferation and tumor growth, as well as, glutamic acid, and human epidermal growth receptor 2 (HER2) in blood samples of BC patients in comparison to healthy controls using qRT-PCR, liquid chromatography/mass spectrometry (LC/MS/MS), and ELISA. RESULTS: Our findings showed that the two miRNAs (miRNA-145, miRNA-382) were expressed at lower levels in BC sera than healthy control group, while miRNA-21 was expressed at higher levels in BC patients than control subjects. Area under ROC curves of BC samples revealed that AUC of miRNA-145, miRNA-382, miRNA-21, and glutamic acid was evaluated to equal 0.99, 1.00, 1.00 and 1.00, respectively. Besides, there was a significantly positive correlation between miRNA-145 and miRNA-382 (r = 0.737), and a highly significant positive correlation between miRNA-21 and glutamic acid (r = 0.385). CONCLUSION: Based on our results, we conclude that the detection of serum miRNA-145, -382 and -21 as a panel along with glutamic acid, and circulating HER2 concentrations could be useful as a non-invasive diagnostic profiling for early prediction of breast cancer in Egyptian patients. It can provide an insight into disease progression, discriminate between malignancy and healthy control, and overcome the use limitations (low sensitivity and specificity, repeated risky exposure, and high cost) of other detecting tools, including mammography, magnetic resonance imaging, and ultrasound.


Assuntos
Neoplasias da Mama , MicroRNA Circulante , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Egito , Ácido Glutâmico/metabolismo , Espectrometria de Massas em Tandem , Biomarcadores Tumorais/genética , MicroRNAs/genética , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
15.
Chem Biol Drug Des ; 99(3): 470-482, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939319

RESUMO

Two series of quinoline-thiazole and quinoline-thiazolidinone hybrids were designed, synthesized, and evaluated for their in vitro antitumor activity on MCF-7 breast cancer cell line. In comparison with lapatinib (IC50  = 4.69 µM), compounds 4b and 6b exhibited the best antiproliferative activity with IC50 values of 33.19 and 5.35 µM, respectively. Although compound 6b showed higher cytotoxicity, compound 4b exhibited better inhibitory activity toward the epidermal growth factor receptor (EGFR) pathway than compound 6b as represented by the significant reduction in the EGFR kinase activity and the levels of phosho-EGFR and phosho-AKT when compared to lapatinib as a reference standard. Moreover, compound 4b was capable of down-regulating the anti-apoptotic genes Bcl-2 and survivin and up-regulating the level of the pro-apoptotic gene BAX. Molecular modeling study was carried out to predict the binding interactions of both compounds into the target kinase. Finally, the physicochemical properties were investigated in silico as well.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinolinas/química , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/metabolismo , Quinolinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
J Genet Eng Biotechnol ; 20(1): 142, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36201094

RESUMO

BACKGROUND: Acetaminophen (APAP) overdose is a common cause of hepatotoxicity. Antioxidants like N-acetyl cysteine are recommended as a therapeutic option; nevertheless, it has limitations. The search for efficient alternatives is ongoing. Probiotics are live microorganisms that maintain a healthy gut microecology. Lactobacillus rhamnosus GG (LGG) is one of the widely used probiotics. Our study aimed to assess the protective and therapeutic effects of probiotic LGG on APAP-induced hepatotoxicity and evaluate the molecular pathways behind this effect. METHODS: Wistar Albino male rats were randomly distributed into the following experimental groups: group 1, non-treated rats (vehicle); group 2, rats received oral gavage of suspension of probiotic LGG (5 × 1010 CFU GG/0.5 ml in PBS) daily for 2 weeks (probiotic control); group 3, rats received APAP dose of 2 g/kg body weight (positive control); group 4, rats received oral gavage of suspension of probiotic LGG for 2 weeks followed by a single dose of APAP injection (prophylactic); and group 5, rats received a single dose of APAP and then 24 h later treated with oral gavage of probiotic LGG daily for 2 weeks (treatment). RESULTS: Our study revealed that administration of probiotic LGG (either as prophylactic or treatment) exhibited a remarkable reduction in APAP-induced liver injury as resembled by the decrease in liver enzymes (ALT and AST) and the histopathological features of liver sections. Moreover, the significant reduction in the oxidative marker malondialdehyde, along with the enhancement in glutathione reductase, and the significant reduction in inflammatory markers (nitric oxide and tumor necrosis factor-α) were all indicators of the efficiency of LGG in ameliorating the alterations accompanied with APAP-induced hepatotoxicity. Our findings also demonstrate that LGG administration boosted the expression of Nrf2 and PGC-1 while decreasing the expression of protein kinase C (PKC). As a result, the nuclear abundance of Nrf2 is increased, and the expression of various antioxidants is eventually upregulated. CONCLUSION: Our study shows that probiotic LGG supplementation exerts a prophylactic and therapeutic effect against APAP-induced hepatotoxicity through modulating the expression of PKC and the Nrf2/PGC-1α signaling pathway and eventually suppressing oxidative damage from APAP overdose.

17.
Curr Pharm Biotechnol ; 23(11): 1377-1382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34792008

RESUMO

BACKGROUND: Shortage of oxygen is a common condition for residents of high-altitude (HA) areas. In mammals, hemoglobin (Hb) has four derivatives: oxyhemoglobin (Hb-O2), carboxyhemoglobin (Hb-CO), sulfhemoglobin (Hb-S), and methemoglobin (Met-Hb). In HA areas, aberrant physiological performance of blood hemoglobin is well-established. OBJECTIVES: The study aimed to investigate the influence of 30 days of HA residence on rabbits' total Hb, Hb derivatives, Hb autooxidation rate, and antioxidant enzymes in comparison to low-altitude control rabbits. Further, the study aimed to investigate the effect of antioxidant-rich Angelica archangelica and/or Ginkgo biloba extracts on the same parameters in HA-resident rabbits. METHODS: Rabbits subjected to 30 days of HA residence were compared to low-altitude control rabbits. HA-residence rabbits were then orally administered 0.11 g/kg b.wt. of Angelica archangelica and/or Ginkgo biloba extract for 14 days. Hb derivatives and Hb autooxidation rate were measured spectrophotometrically. Antioxidant enzymes were estimated using specialized kits. RESULTS: Compared to low-altitude rabbits, 30-day HA-residence rabbits showed a noticeable increase (p<0.05) in Hb-O2 and Hb-CO concentration. In addition, Met-Hb concentration, autooxidation rate of Hb molecules, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) exhibited a remarkable increase in HA-residence rabbits (p<0.01), reflective of rapid ROS generation. In HA-residence rabbits, both individual and combined treatment with antioxidant-rich extracts for 14 days resulted in recovery to near-normal functional levels of Hb-O2 and Met-Hb, Hb autooxidation rate, and activities of SOD and GPx, while only combined treatment led to Hb-O2 recovery. CONCLUSION: The findings suggest that functional Hb levels may be recovered by oral administration of A. archangelica, G. biloba, or combined treatments. In conclusion, oxidative stress due to living in HA areas may be avoided by supplementation with natural antioxidants.


Assuntos
Angelica archangelica , Altitude , Animais , Antioxidantes/farmacologia , Ginkgo biloba , Hemoglobinas , Mamíferos , Extratos Vegetais/farmacologia , Coelhos , Superóxido Dismutase
18.
Front Chem ; 10: 890675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518717

RESUMO

Cyclophosphamide (CP) is a mutagen that is used in cancer chemotherapy, due to its genotoxicity and as an immunosuppressive agent. Thalidomide (TH) is another cancer chemotherapeutic drug. In this study, the cytogenotoxicity and hypoxia modulatory activities of two phthalimide analogs of TH have been evaluated with/without CP. Both analogs have increased CP-stimulated chromosomal aberrations than those induced by TH, including gaps, breaks/fragments, deletions, multiple aberrations, and tetraploidy. The analogs have elevated the cytotoxic effect of CP by inhibiting the mitotic activity, in which analog 2 showed higher mitosis inhibition. CP has induced binucleated and polynucleated bone marrow cells (BMCs), while micronuclei (MN) are absent. TH and analogs have elevated the CP-stimulated binucleated BMCs, while only analogs have increased the CP-induced polynucleated BMCs and inhibited the mononucleated BMCs. MN-BMCs were shown together with mononucleated, binucleated, and polynucleated cells in the CP group. Both analogs have elevated mononucleated and polynucleated MN-BMCs, whereas in presence of CP, TH and analogs have enhanced mononucleated and binucleated MN-BMCs. The analogs significantly induce DNA fragmentation in a comet assay, where analog 1 is the strongest inducer. The treatment of mice with CP has resulted in a high hypoxia status as indicated by high pimonidazole adducts and high HIF-1α and HIF-2α concentrations in lymphocytes. Analogs/CP-treated mice showed low pimonidazole adducts. Both analogs have inhibited HIF-1α concentration but not HIF-2α. Taken together, the study findings suggest that both analogs have a higher potential to induce CP-genotoxicity than TH and that both analogs inhibit CP-hypoxia via the HIF-1α-dependent mechanism, in which analog 1 is a more potent anti-hypoxic agent than analog 2. Analog 1 is suggested as an adjacent CP-complementary agent to induce CP-genotoxicity and to inhibit CP-associated hypoxia.

19.
Front Nutr ; 9: 854780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399691

RESUMO

Sargassum dentifolium, (Turner) C. Agarth, 1820, is an edible brown alga collected from red seashores, Egypt. Oral tongue squamous cell carcinoma (OTSCC) is an aggressive malignancy. Hypoxia leads to chemotherapeutic resistance. This work aimed to explore the anti-hypoxia effect of water-soluble polysaccharide fractions of S. dentifolium (SD1-SD3) in CAL-27 OTSCC cells. Cell cytotoxicity assay (MTT); cell death mode (DNA staining); total hypoxia (pimonidazole), HIF-1α (ELISA and immunocytochemistry), HIF-1ß (ELISA), and hsa-miRNA-21-5p and hsa-miRNA-210-3p (qRT-PCR) were investigated. SD1 and SD2 showed a cytotoxic effect due to apoptosis. SD2 and SD3 decreased total cell hypoxia, inhibited miR-210 (p < 0.001 and p < 0.01), miR-21 (p < 0.01 and p < 0.05), and HIF-1α (p < 0.01 and p < 0.05), respectively. However, only SD3 suppressed HIF-1ß (p < 0.05). In conclusion, SD2 showed a potential anti-hypoxia effect through amelioration of HIF-1α regulators, which may help in decreasing hypoxia-induced therapeutic resistance.

20.
Nat Rev Drug Discov ; 20(8): 629-651, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145432

RESUMO

Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.


Assuntos
Terapia Genética/métodos , Terapia de Alvo Molecular , Neoplasias/terapia , RNA Longo não Codificante/genética , Animais , Humanos , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA