Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770806

RESUMO

Novel drugs are desperately needed in order to combat a significant challenge due to chemo-therapeutic resistance and bad prognosis. This research aimed to assess the anticancer activity of a newly synthesized ciprofloxacin Mannich base (CMB) on ovarian cancer (OVCAR-3) and lung cancer (A-549) cell lines and to investigate probable involved molecular mechanisms. The cytotoxic and pro-apoptotic impact of CMB on both cell lines was investigated using MTT assay, Annexin V assay, and cell cycle analysis, as well as caspase-3 activation. Western blotting was carried out to evaluate downstream targets of the MAPK pathway, while qRT PCR was used to evaluate the gene expression pattern of the p53/Bax/Bcl2 pathway. CMB treatment showed significantly reduced cell proliferation in both OVCAR-3 and A-549 cells with half maximum inhibitory concentration (IC50) = 11.60 and 16.22 µg/mL, respectively. CMB also induced apoptosis, S phase cell cycle arrest, and up-regulated expression of p53, p21, and Bax while down-regulated Bcl2 expression. CMB also halted cell proliferation by deactivating the MAPK pathway. In conclusion, CMB may be regarded as a potential antiproliferative agent for lung and ovarian cancers due to anti-proliferative and pro-apoptotic actions via inhibition of the MAPK pathway and p53/Bax/Bcl2.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Neoplasias Ovarianas , Humanos , Feminino , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Apoptose , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Bases de Mannich , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
Inflammopharmacology ; 30(5): 1909-1926, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764864

RESUMO

BACKGROUND: Cardiovascular disorders are major complications of rheumatoid arthritis (RA). Hence, finding effective agents that can target RA progression and its cardiovascular consequences is demanding. The present work aimed to explore the potential of lisinopril, an angiotensin-converting enzyme inhibitor, to mitigate adjuvant's-induced arthritis with emphasis on the pro-inflammatory signals, articular degradation cues, and angiogenesis alongside JAK-2/STAT-3 and Nrf2/HO-1 pathways. METHODS: Lisinopril (10 mg/kg/day) was administered by oral gavage for 3 weeks and the target signals were examined by biochemical assays, ELISA, histopathology, immunoblotting, and immunohistochemistry. RESULTS: Lisinopril attenuated the progression of arthritis as proven by lowering paw edema, arthritic index, and gait scores alongside diminishing the immune-cell infiltration/aberrant histopathology in the dorsal pouch lining. These favorable actions were associated with curtailing the production of inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-17) and the pro-inflammatory angiotensin II alongside upregulating the anti-inflammatory angiotensin-(1-7) in the hind paw of arthritic rats. At the molecular level, lisinopril inhibited the upstream JAK-2/STAT-3 pathway by downregulating the protein expression of p-JAK-2/total JAK-2 and p-STAT-3/total STAT-3 ratio and the nuclear levels of NF-κBp65. Meanwhile, lisinopril curbed the downstream cartilage degradation signals matrix metalloproteinases (MMP-3 and MMP-9) and the bone erosion cue RANKL. Equally important, the protein expression of the angiogenesis signal VEGF was downregulated in the hind paw/dorsal lining. With respect to oxidative stress, lisinopril suppressed the paw lipid peroxides and boosted GSH and Nrf-2/HO-1 pathway. CONCLUSION: Lisinopril attenuated adjuvant-induced arthritis via inhibition of inflammation, articular degradation cues, and angiogenesis.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Artrite Experimental , Artrite Reumatoide , Lisinopril , Angiotensina II/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Adjuvante de Freund , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Peróxidos Lipídicos , Lisinopril/metabolismo , Lisinopril/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Medicina (Kaunas) ; 58(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334601

RESUMO

Background and Objectives: Nephroprotective effect of statins is still controversial. The aim of this study was to investigate the possible hemin-like nephroprotective effect of rosuvastatin (RSV) in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: DN was induced in rats via a single dose of 50 mg/kg STZ i.p., with or without RSV (10 mg/kg orally) for 30 days. To investigate hemin-like effect of RSV on renal heme oxygenase-1 (HO-1), RSV was administered in the presence or absence of an inhibitor of HO-1; zinc protoporphyrin-XI (ZnPP), in a dose of 50 µmol/kg i.p. Results: Induction of diabetes with STZ caused, as expected, significant hyperglycemia, as well as deteriorated kidney function, lipid profile and histopathological architecture. The DN group also showed renal oxidative stress, indicated by decreased superoxide dismutase, catalase, and reduced glutathione, with increased malondialdehyde, myeloperoxidase and nitric oxide. Renal expression of inflammatory marker TNF-α, and pro-apoptotic marker caspase 3, were also increased in the DN group. Administration of RSV in DN rats did not improve glucose level but succeeded in recovering kidney function and normal structure as well as improving the lipid profile. RSV also improved renal oxidative, inflammatory, and apoptotic statuses. Interestingly, the administration of RSV increased renal expression and activity of HO-1 compared to the untreated DN group. Co-administration of ZnPP blocked the effect of RSV on HO-1 and deteriorated all RSV favorable effects. Conclusions: RSV can protect against DN, at least in part, via increasing renal HO-1 expression and/or activity, which seems to be upstream to RSV antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/prevenção & controle , Heme Oxigenase-1 , Humanos , Rim/patologia , Ratos , Rosuvastatina Cálcica/uso terapêutico , Estreptozocina/efeitos adversos
4.
Mediators Inflamm ; 2019: 3041438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263381

RESUMO

Despite the usefulness of glucocorticoids, they may cause hazardous side effects that limit their use. Searching for compounds that are as equally efficient as glucocorticoids, but with less side effects, the current study compared plant steroids, namely, glycyrrhetinic acid, guggulsterone, boswellic acid, withaferin A, and diosgenin with the classical glucocorticoid, fluticasone. This was approached both in silico using molecular docking against glucocorticoid receptor (GR) and in vivo in two different animal models. All tested compounds interacted with GR, but only boswellic acid and withaferin A showed docking results comparable to fluticasone, as well as similar in vivo anti-inflammatory effects, by significantly decreasing serum levels of interleukin-6 and tumor necrosis factor-α in cotton pellet-induced granuloma in rats. In addition, both compounds significantly decreased the percent of change in ear weight in croton oil-induced ear edema in mice and the granuloma weight in cotton pellet-induced granuloma in rats, to levels comparable to that of fluticasone. Both boswellic acid and withaferin A had no effect on adrenal index, but only withaferin A significantly increased the thymus index. In conclusion, boswellic acid may have comparable anti-inflammatory effects to fluticasone with fewer side effects.


Assuntos
Otopatias/tratamento farmacológico , Otopatias/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fitosteróis/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Óleo de Cróton/toxicidade , Diosgenina/uso terapêutico , Otopatias/sangue , Otopatias/induzido quimicamente , Edema/sangue , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Ensaio de Imunoadsorção Enzimática , Ácido Glicirretínico/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-6/sangue , Camundongos , Simulação de Acoplamento Molecular , Pregnenodionas/uso terapêutico , Ratos , Software , Timo/efeitos dos fármacos , Timo/metabolismo , Triterpenos/uso terapêutico , Fator de Necrose Tumoral alfa/sangue , Vitanolídeos/uso terapêutico
5.
Mediators Inflamm ; 2015: 859383, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089605

RESUMO

To investigate mechanisms by which thymoquinone (TQ) can prevent methotrexate- (MTX-) induced hepatorenal toxicity, TQ (10 mg/kg) was administered orally for 10 days. In independent rat groups, MTX hepatorenal toxicity was induced via 20 mg/kg i.p. at the end of day 3 of experiment, with or without TQ. MTX caused deterioration in kidney and liver function, namely, blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase. MTX also caused distortion in renal and hepatic histology, with significant oxidative stress, manifested by decrease in reduced glutathione and catalase, as well as increase in malondialdehyde levels. In addition, MTX caused nitrosative stress manifested by increased nitric oxide, with upregulation of inducible nitric oxide synthase. Furthermore, MTX caused hepatorenal inflammatory effects as shown by increased tumor necrosis factor-α, besides upregulation of necrosis factor-κB and cyclooxygenase-2 expressions. MTX also caused apoptotic effect, as it upregulated caspase 3 in liver and kidney. Using TQ concurrently with MTX restored kidney and liver functions, as well as their normal histology. TQ also reversed oxidative and nitrosative stress, as well as inflammatory and apoptotic signs caused by MTX alone. Thus, TQ may be beneficial adjuvant that confers hepatorenal protection to MTX toxicity via antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic mechanisms.


Assuntos
Benzoquinonas/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malondialdeído/toxicidade , Metotrexato/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Glutationa/metabolismo , Masculino , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
6.
Immunopharmacol Immunotoxicol ; 36(2): 130-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24521009

RESUMO

CONTEXT: The anticancer drug methotrexate (MTX) may cause multi-organ toxicities, including nephrotoxicity. OBJECTIVE: To investigate effects of peroxisome proliferator activator receptor (PPAR)-α and -γ agonists; fenofibrate (FEN) and pioglitazone (PIO), in MTX-induced nephrotoxicity in rats. METHODS: Rats were given FEN or PIO (150 or 5 mg/kg/day, respectively) orally for 15 days. MTX was injected as a single dose of 20 mg/kg, i.p. at day 11 of experiment, with or without either PPAR agonists. RESULTS: MTX induced renal toxicity, assessed by increase in serum urea and creatinine as well as histopathological alterations. MTX caused renal oxidative/nitrosative stress, indicated by decrease in GSH and catalase with increase in malondialdehyde and nitric oxide (NOx) levels. In addition, MTX increased renal level of the pro-inflammatory cytokine; tumor necrosis factor (TNF)-α and up-regulated the expression of both the inflammatory and apoptotic markers; NF-κB and caspase 3. Pre-administration of FEN or PIO to MTX-treated rats improved renal function and reversed oxidative/nitrosative parameters. Interestingly, pre-administration of PIO, but not FEN, decreased renal TNF-α level and NF-κB expression compared to MTX alone. Furthermore, PIO had more significant effect than FEN on reversing MTX-induced renal caspase 3 expression. DISCUSSION: Both FEN and PIO conferred protection against MTX-induced nephrotoxicity through comparable amelioration of oxidative/nitrosative stress. FEN lacked any effect on TNF-α/NF-κB, which was reflected on its less improvement on renal histopathology and apoptosis. CONCLUSION: At indicated dosage, PPAR-γ ligand; PIO shows better improvement of MTX-induced nephrotoxicity compared to PPAR-α ligand; FEN due to differential effect on TNF-α/NF-κB inflammatory pathway.


Assuntos
Rim/metabolismo , Rim/patologia , Metotrexato/efeitos adversos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Creatinina/sangue , Creatinina/urina , Rim/efeitos dos fármacos , Ligantes , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismo
7.
Immunol Res ; 72(3): 438-449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240953

RESUMO

Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.


Assuntos
Ilhas de CpG , Metilação de DNA , Evolução Molecular , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ilhas de CpG/genética , Humanos , Animais , Mutagênese , Transposases/genética , Transposases/metabolismo , Mutação , Recombinação V(D)J/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
9.
Eur J Clin Invest ; 43(7): 740-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23594336

RESUMO

BACKGROUND: The role of lectin-like oxidized low-density lipoprotein receptor (LOX)-1 has been implicated in the pathogenesis of different diseases, including atherosclerosis, hypertension, obesity, diabetes mellitus and metabolic syndrome. To date, several studies aimed at partially investigating the mechanistic role of LOX-1 in these various pathologies. Still, so far, the precise signal transduction pathways involving LOX-1 have not yet been elucidated. MATERIALS AND METHODS: The most recent data published by the authors as well as others concerning different pathways involving LOX-1 are collected to formulate the presented updated review. RESULTS: One of the most prominent pathways highlighted in the present review is the relationship of LOX-1 to NADPH oxidase that acts as a major source of harmful free radicals causing oxidative stress in blood vessels. Other pathways involve lipid and glucose metabolism-mediated signal transduction. DISCUSSION: The modulatory role of LOX-1 on nitric oxide and renin/angiotensin systems as well as on fibrosis, apoptosis and inflammatory pathways is discussed. CONCLUSION: The current review revisits LOX-1 and its related pathways, implicating LOX-1 as a target for ameliorating various pathological conditions.


Assuntos
NADPH Oxidases/metabolismo , Receptores Depuradores Classe E/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Fibrose/metabolismo , Humanos , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo
10.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259443

RESUMO

Magnesium sulfate has demonstrated marked neuroprotection in eclampsia, hypoxia, stroke, and post-traumatic brain injury rodent models. However, its potential impact against chronic-restraint-stress (CRS)-induced depression-like neuropathology and associated alterations in endoplasmic reticulum (ER) stress have not been adequately examined. The present study aimed to investigate the neuroprotective potential of magnesium sulfate in a rat model of CRS-triggered depression-like behavioral disturbance and the underlying molecular mechanisms. Herein, CRS was induced by placing rats into restraining tubes for 6 h/day for 21 days and the animals were intraperitoneally injected with magnesium sulfate (100 mg/kg/day) during the study period. After stress cessation, the depression-like behavior was examined by the open-field test, sucrose preference test, and forced swimming test. The present data demonstrated that CRS triggered typical depression-like behavioral changes which were confirmed by the Z-normalization scores. Mechanistically, serum circulating corticosterone levels spiked, and the hippocampi of CRS-exposed animals demonstrated a significant decline in serotonin, norepinephrine, and dopamine neurotransmitters. At the molecular level, the hippocampal pro-inflammatory TNF-alpha and IL-1ß cytokines and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-HG) increased in stressed animals. In tandem, enhancement of hippocampal ER stress was evidenced by the activation of iNOS/PERK/GRP78/CHOP axis seen by increased protein expression of iNOS, PERK, GRP78, and CHOP signal proteins in the hippocampi of stressed rats. Interestingly, magnesium sulfate administration attenuated the depression-like behavioral outcomes and the histopathological changes in the brain hippocampi. These favorable actions were driven by magnesium sulfate's counteraction of corticosterone spike, and hippocampal neurotransmitter decline, alongside the attenuation of neuroinflammation, pro-oxidation, and ER stress. In conclusion, the current results suggest the promising neuroprotective/antidepressant actions of magnesium sulfate in CRS by dampening inflammation, ER stress, and the associated PERK/GRP78/CHOP pathway.

11.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111238

RESUMO

BACKGROUND: Methotrexate (MTX) is an effective anticancer, anti-inflammatory, and immunomodulatory agent. However, it induces a serious pneumonitis that leads to irreversible fibrotic lung damage. This study addresses the protective role of the natural flavonoid dihydromyricetin (DHM) against MTX-induced pneumonitis via modulation of Nrf2/NF-κB signaling crosstalk. METHODS: Male Wistar rats were divided into 4 groups: control, which received the vehicle; MTX, which received a single MTX (40 mg/kg, i.p) at day 9 of the experiment; (MTX + DHM), which received oral DHM (300 mg/kg) for 14 days and methotrexate (40 mg/kg, i.p) on the 9th day; and DHM, which received DHM (300 mg/kg, p.o) for 14 days. RESULTS: Lung histopathological examination and scoring showed a decline in MTX-induced alveolar epithelial damage and decreased inflammatory cell infiltration by DHM treatment. Further, DHM significantly alleviated the oxidative stress by decreasing MDA while increasing GSH and SOD antioxidant levels. Additionally, DHM suppressed the pulmonary inflammation and fibrosis through decreasing levels of NF-κB, IL-1ß, and TGF-ß1 while promoting the expression of Nrf2, a positive regulator of antioxidant genes, and its downstream modulator, HO-1. CONCLUSION: This study identified DHM as a promising therapeutic target against MTX-induced pneumonitis via activation of Nrf2 antioxidant signaling while suppressing the NF-κB mediated inflammatory pathways.

12.
Front Biosci (Landmark Ed) ; 28(8): 185, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37664933

RESUMO

BACKGROUND: Breast cancer is the most predominant tumor in women. Even though current medications for distinct breast cancer subtypes are available, the non-specificity of chemotherapeutics and chemoresistance imposes major obstacles in breast cancer treatment. Although combretastatin A-4 (CA-4) has been well-reported to have potential anticancer activity, in vivo studies of CA-4 reveal a decrease in its activity. In this respect, a series of CA-4 analogues have been designed, from which one analog [(1-(3-chloro-4-fluorophenyl)-N-(2methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamide, C25H22ClFN4O5] showed drastic cytotoxicity against breast cancer cells. Therefore, this research focused on investigating the in vitro molecular mechanism underlying the cytotoxicity of the CA-4 analogue, particularly the MAPK/ERK as well as PI3K/AKT pathways as attractive therapeutic targets in breast cancer. METHODS: The cell viability of MCF-7, MDA-MB231, and MDA-MB453 was assessed after treatment with the CA-4 analogue, and apoptosis was analyzed via Annexin V-FITC/PI dual staining. MAPK/ERK and PI3K/AKT were thoroughly assessed using western blotting. Real-time PCR was used to estimate apoptosis-related markers, including the P53, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl2) genes. RESULTS: The CA-4 analogue reduced the survival of all cancerous cells in a concentration-dependent manner and induced apoptosis through the mitochondrial pathway (39.89 ± 1.5%, 32.82 ± 0.6%, and 23.77 ± 1.1% in MCF-7, MDA-MB231, and MDA-MB453 cells), respectively. The analogue also attenuated the expression of pMEK1/2/t-MEK1/2, p-ERK1/2/t-ERK1/2, p-PI3K/t-PI3K, and p-AKT/t-AKT proteins in all three cancer cell lines in a time-dependent manner. Furthermore, the CA-4 analogue upregulated the expression of the P53 gene and dramatically increased the ratio of Bax/Bcl2 genes. CONCLUSIONS: The enhanced cytotoxicity can be attributed to substituting the hydroxyl group in CA-4 with chlorine in the meta-position of ring B, substituting the para-methoxy group in CA-4 with fluorine in the analogue, and lastly, introducing an extension to the compound's structure (ring C). Therefore, CA-4 analogue can attenuate the proliferation of human breast cancer cells by inducing apoptosis and simultaneously suppressing the MAPK/ERK and PI3K/AKT pathways.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína X Associada a bcl-2/genética , Apoptose
13.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630980

RESUMO

Cadmium is an environmental contaminant associated with marked neurotoxicity and cognitive impairment. Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated promising neuroprotection against cerebral ischemia and diabetic dementia. However, there has been no study of its effect on cadmium-induced cognitive deficits. In the present work, linagliptin's prospective neuroprotective effects against cadmium-evoked cognitive decline were examined in vivo in rats. The molecular pathways related to oxidative stress, apoptosis, and autophagy were investigated. Histology, immunohistochemistry, ELISA, and biochemical assays were performed on brain hippocampi after receiving linagliptin (5 mg/kg/day). The current findings revealed that cadmium-induced learning and memory impairment were improved by linagliptin as seen in the Morris water maze, Y-maze, and novel object recognition test. Moreover, linagliptin lowered hippocampal neurodegeneration as seen in histopathology. At the molecular level, linagliptin curtailed hippocampal DPP-4 and augmented GLP-1 levels, triggering dampening of the hippocampal neurotoxic signals Aß42 and p-tau in rats. Meanwhile, it enhanced hippocampal acetylcholine and GABA and diminished the glutamate spike. The behavioral recovery was associated with dampening of the hippocampal pro-oxidant response alongside SIRT1/Nrf2/HO-1 axis stimulation. Meanwhile, linagliptin counteracted hippocampal apoptosis markers and inhibited the pro-apoptotic kinase GSK-3ß. In tandem, linagliptin activated hippocampal autophagy by lowering SQSTM-1/p62 accumulation, upregulating Beclin 1, and stimulating AMPK/mTOR pathway. In conclusion, linagliptin's antioxidant, antiapoptotic, and pro-autophagic properties advocated its promising neuroprotective impact. Thus, linagliptin may serve as a management approach against cadmium-induced cognitive deficits.

14.
Front Pharmacol ; 14: 1199294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497114

RESUMO

Introduction: Fast food is a major risk factor for atherosclerosis, a leading cause of morbidity and mortality in the Western world. Apelin, the endogenous adipokine, can protect against cardiovascular disease via activating its receptor, APJ. Concurrently, secoisolariciresinol diglucoside (SDG), a flaxseed lignan extract (FLE), showed a therapeutic impact on atherosclerosis. The current study aimed to examine the effect of SDG on cafeteria diet (CAFD)-induced vascular injury and cardiac fibrosis via tracking the involvement of the apelin/APJ pathway. Methods: Thirty male rats were allocated into control, FLE-, CAFD-, CAFD/FLE-, and CAFD/FLE/F13A-treated rats, where F13A is an APJ blocker. All treatments lasted for 12 weeks. Results and discussion: The CAFD-induced cardiovascular injury was evidenced by histological distortions, dyslipidemia, elevated atherogenic indices, cardiac troponin I, collagen percentage, glycogen content, and apoptotic markers. CAFD increased both the gene and protein expression levels of cardiac APJ, apelin, and FOXO3a, in addition to increasing endothelin-1, VCAM1, and plasminogen activator inhibitor-1 serum levels and upregulating cardiac MMP-9 gene expression. Moreover, CAFD reduced serum paraoxonase 1 and nitric oxide levels, cardiac AMPK, and nuclear Nrf2 expression. FLE attenuated CAFD-induced cardiovascular injury. Such effect was reduced in rats receiving the APJ blocker, implicating the involvement of apelin/APJ in FLE protective mechanisms. Conclusion: FLE supplementation abrogated CAFD-induced cardiac injury and endothelial dysfunction in an apelin/APJ-dependent manner.

15.
Biomedicines ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002000

RESUMO

Cognitive decline and Alzheimer-like neuropathology are common manifestations of cadmium toxicity. Thanks to its antioxidant/anti-apoptotic features, dapagliflozin has demonstrated promising neuroprotective actions. However, its effect on cadmium-induced neurotoxicity is lacking. The present work aimed to examine whether dapagliflozin could protect rats from cadmium-evoked cognitive decline. In this study, the behavioral disturbances and hippocampal biomolecular alterations were studied after receiving dapagliflozin. Herein, cadmium-induced memory/learning decline was rescued in the Morris water maze, novel object recognition task, and Y-shaped maze by dapagliflozin. Meanwhile, the hippocampal histopathological abnormalities were mitigated. The molecular mechanisms revealed that dapagliflozin lowered hippocampal expression of p-tau and Aß42 neurotoxic proteins while augmenting acetylcholine. The cognitive enhancement was triggered by hippocampal autophagy stimulation, as indicated by decreased SQSTM-1/p62 and Beclin 1 upregulation. Meanwhile, a decrease in p-mTOR/total mTOR and an increase in p-AMPK/total AMPK ratio were observed in response to dapagliflozin, reflecting AMPK/mTOR cascade stimulation. Dapagliflozin, on the other hand, dampened the pro-apoptotic processes in the hippocampus by downregulating Bax, upregulating Bcl-2, and inactivating GSK-3ß. The hippocampal oxidative insult was mitigated by dapagliflozin as seen by lipid peroxide lowering, antioxidants augmentation, and SIRT1/Nrf2/HO-1 pathway activation. In conclusion, dapagliflozin's promising neuroprotection was triggered by its pro-autophagic, anti-apoptotic, and antioxidant properties.

16.
Metabolites ; 13(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36984859

RESUMO

Liver ischemia-reperfusion injury (IRI) is a pathophysiological insult that often occurs during liver surgery. Blackberry leaves are known for their anti-inflammatory and antioxidant activities. AIMS: To achieve site-specific delivery of blackberry leaves extract (BBE) loaded AgNPs to the hepatocyte in IRI and to verify possible molecular mechanisms. METHODS: IRI was induced in male Wister rats. Liver injury, hepatic histology, oxidative stress markers, hepatic expression of apoptosis-related proteins were evaluated. Non-targeted metabolomics for chemical characterization of blackberry leaves extract was performed. KEY FINDINGS: Pre-treatment with BBE protected against the deterioration caused by I/R, depicted by a significant improvement of liver functions and structure, as well as reduction of oxidative stress with a concomitant increase in antioxidants. Additionally, BBE promoted phosphorylation of antiapoptotic proteins; PI3K, Akt and mTOR, while apoptotic proteins; Bax, Casp-9 and cleaved Casp-3 expressions were decreased. LC-HRMS-based metabolomics identified a range of metabolites, mainly flavonoids and anthocyanins. Upon comprehensive virtual screening and molecular dynamics simulation, the major annotated anthocyanins, cyanidin and pelargonidin glucosides, were suggested to act as PLA2 inhibitors. SIGNIFICANCE: BBE can ameliorate hepatic IRI augmented by BBE-AgNPs nano-formulation via suppressing, oxidative stress and apoptosis as well as stimulation of PI3K/Akt/mTOR signaling pathway.

17.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37111290

RESUMO

Rebamipide is a quinolone derivative that has been commonly used for the treatment of gastric and duodenal ulcers. However, the molecular mechanisms of rebamipide against acetic acid-evoked colitis have not been adequately examined. Hence, the current study aimed to investigate the ameliorative effect of rebamipide in a rat model of acetic acid-evoked ulcerative colitis and the linked mechanisms pertaining to SIRT1/FoxO3a/Nrf2 and PI3K/AKT pathways. Herein, colitis was induced by the intrarectal administration of 3% acetic acid solution in saline (v/v) while rebamipide was administered by oral gavage (100 mg/kg/day) for seven days before the colonic insult. The colonic injury was examined by macroscopical and microscopical examination. The current findings demonstrated that rebamipide significantly improved the colonic injury by lowering the colonic disease activity index and macroscopic mucosal injury score. Moreover, it mitigated the histopathological aberrations and microscopical damage score. The favorable outcomes of rebamipide were driven by combating inflammation evidenced by dampening the colonic expression of NF-κBp65 and the pro-inflammatory markers CRP, TNF-α, and IL-6. In the same context, rebamipide curtailed the colonic pro-inflammatory PI3K/AKT pathway as seen by downregulating the immunostaining of PI3K and p-AKT(Ser473) signals. In tandem, rebamipide combated the colonic pro-oxidant events and augmented the antioxidant milieu by significantly diminishing the colonic TBARS and replenishing GSH, SOD, GST, GPx, and CAT. In the same regard, rebamipide stimulated the colonic upstream SIRT1/FoxO3a/Nrf2 axis by upregulating the expression of SIRT1, FoxO3a, and Nrf2, alongside downregulating Keap-1 gene expression. These antioxidant actions were accompanied by upregulation of the protein expression of the cytoprotective signal PPAR-γ in the colons of rats. In conclusion, the present findings suggest that the promising ameliorative features of rebamipide against experimental colitis were driven by combating the colonic inflammatory and oxidative responses. In perspective, augmentation of colonic SIRT1/FoxO3a/Nrf2 and inhibition of PI3K/AKT pathways were engaged in the observed favorable outcomes.

18.
J Biomol Struct Dyn ; : 1-11, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477257

RESUMO

The recent outbreak of the Ebola virus (EBOV) has marked it as one of the most severe health threats globally. Among various anti-EBOV inhibitors studied, galidesivir (BCX4430) has shown remarkable efficacy. This study aims to identify novel potential anti-EBOV drugs among galidesivir analogs, focusing on the Zaire ebolavirus (Z-EBOV), which exhibits a mortality rate of 90%. We subjected 200 candidate compounds to molecular docking calculations, followed by an evaluation of the bioactivity of the top 25 compounds using the OSIRIS Property Explorer. Initial 50 ns molecular dynamics (MD) simulations were then performed. According to our findings, only six compounds exhibited positive drug scores. We further performed molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations of binding energy over 50 ns, selecting the two top-performing compounds for extended 150 ns MD simulations. CID 117698807 and CID 117712809 showed higher binding stability compared to galidesivir, with ΔGbinding values of -36.7 and -53.4 kcal/mol, respectively. Both compounds demonstrated high stability within the Z-EBOV-V24 active site over the 150 ns MD simulations. Hence, our study proposes CID 117698807 and CID 117712809 as potential anti-Z-EBOV-V24 drug candidates, warranting further investigation.Communicated by Ramaswamy H. Sarma.

19.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513918

RESUMO

Cadmium (Cd) is a widespread environmental pollutant that triggers testicular dysfunction. Dapagliflozin is a selective sodium-glucose co-transporter-2 inhibitor with notable antioxidant and anti-apoptotic features. It has shown marked cardio-, reno-, hepato-, and neuroprotective effects. Yet, its effect on Cd-evoked testicular impairment has not been examined. Hence, the goal of the current study was to investigate the potential positive effect of dapagliflozin against Cd-induced testicular dysfunction in rats, with an emphasis on autophagy, apoptosis, and oxidative insult. Dapagliflozin (1 mg/kg/day) was given by oral gavage, and testicular dysfunction, impaired spermatogenesis, and biomolecular events were studied via immunohistochemistry, histopathology, and ELISA. The current findings demonstrated that dapagliflozin improved relative testicular weight, serum testosterone, and sperm count/motility and reduced sperm abnormalities, signifying mitigation of testicular impairment and spermatogenesis disruption. Moreover, dapagliflozin attenuated Cd-induced histological abnormalities and preserved testicular structure. The testicular function recovery was prompted by stimulating the cytoprotective SIRT1/Nrf2/HO-1 axis, lowering the testicular oxidative changes, and augmenting cellular antioxidants. As regards apoptosis, dapagliflozin counteracted the apoptotic machinery by downregulating the pro-apoptotic signals together with Bcl-2 upregulation. Meanwhile, dapagliflozin reactivated the impaired autophagy, as seen by a lowered accumulation of SQSTM-1/p62 and Beclin 1 upregulation. In the same context, the testicular AMPK/mTOR pathway was stimulated as evidenced by the increased p-AMPK (Ser487)/total AMPK ratio alongside the lowered p-mTOR (Ser2448)/total mTOR ratio. Together, the favorable mitigation of Cd-induced testicular impairment/disrupted spermatogenesis was driven by the antioxidant, anti-apoptotic, and pro-autophagic actions of dapagliflozin. Thus, it could serve as a tool for the management of Cd-evoked testicular dysfunction.

20.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765022

RESUMO

Cadmium is an environmental toxicant that instigates cognitive deficits with excessive glutamate excitatory neuroactivity in the brain. Topiramate, a glutamate receptor antagonist, has displayed favorable neuroprotection against epilepsy, cerebral ischemia, and Huntington's disease; however, its effect on cadmium neurotoxicity remains to be investigated. In this study, topiramate was tested for its potential to combat the cognitive deficits induced by cadmium in rats with an emphasis on hippocampal oxidative insult, apoptosis, and autophagy. After topiramate intake (50 mg/kg/day; p.o.) for 8 weeks, behavioral disturbances and molecular changes in the hippocampal area were explored. Herein, Morris water maze, Y-maze, and novel object recognition test revealed that topiramate rescued cadmium-induced memory/learning deficits. Moreover, topiramate significantly lowered hippocampal histopathological damage scores. Mechanistically, topiramate significantly replenished hippocampal GLP-1 and dampened Aß42 and p-tau neurotoxic cues. Notably, it significantly diminished hippocampal glutamate content and enhanced acetylcholine and GABA neurotransmitters. The behavioral recovery was prompted by hippocampal suppression of the pro-oxidant events with notable activation of SIRT1/Nrf2/HO-1 axis. Moreover, topiramate inactivated GSK-3ß and dampened the hippocampal apoptotic changes. In tandem, stimulation of hippocampal pro-autophagy events, including Beclin 1 upregulation, was triggered by topiramate that also activated AMPK/mTOR pathway. Together, the pro-autophagic, antioxidant, and anti-apoptotic features of topiramate contributed to its neuroprotective properties in rats intoxicated with cadmium. Therefore, it may be useful to mitigate cadmium-induced cognitive deficits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA