Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Angiogenesis ; 25(2): 259-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34997404

RESUMO

Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved  actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.


Assuntos
Hipertensão Pulmonar , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Fibrose , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Miócitos de Músculo Liso/patologia , Prolil Hidroxilases/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(30): E3043-52, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024173

RESUMO

Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat deposition.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Colágeno Tipo XVIII/biossíntese , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo/citologia , Adiposidade/fisiologia , Animais , Colágeno Tipo XVIII/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Ácidos Graxos/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Fibroblastos/citologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Transcrição Gênica/fisiologia
3.
Matrix Biol ; 115: 139-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623578

RESUMO

Collagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development. The lack of ColXVIII or its specific isoforms lead to congenital defects in the 3D patterning of the ureteric tree where the short isoform plays a prominent role. Moreover, the ex vivo data suggests that ColXVIII is involved in the kidney epithelial tree patterning via its N-terminal domains, and especially the Thrombospondin-1-like domain common to all isoforms. This morphogenetic function likely involves integrins expressed in the ureteric epithelium. Altogether, the results point to an important role for ColXVIII in the matrix-integrin-mediated functions regulating renal development.


Assuntos
Colágeno Tipo XVIII , Rim , Isoformas de Proteínas , Animais , Camundongos , Colágeno Tipo XVIII/genética , Colágeno Tipo XVIII/metabolismo , Integrinas , Rim/embriologia , Rim/metabolismo , Morfogênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ureter/embriologia , Ureter/metabolismo
4.
J Biol Chem ; 286(10): 7755-7764, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21193414

RESUMO

Collagen XVIII is characterized by three variant N termini, an interrupted collagenous domain, and a C-terminal antiangiogenic domain known as endostatin. We studied here the roles of this collagen type and its variant isoforms in the mouse kidney. Collagen XVIII appeared to be in a polarized orientation in the tubular basement membranes (BMs), the endostatin domain embedded in the BM, and the N terminus residing at the BM-fibrillar matrix interface. In the case of the glomerular BM (GBM), collagen XVIII was expressed in different isoforms depending on the side of the GBM. The orientation appeared polarized here, too, both the endothelial promoter 1-derived short variant of collagen XVIII and the epithelial promoter 2-derived longer variants having their C-terminal endostatin domains embedded in the BM and the N termini at the respective BM-cell interfaces. In addition to loosening of the proximal tubular BM structure, the Col18a1(-/-) mice showed effacement of the glomerular podocyte foot processes, and microindentation studies showed changes in the mechanical properties of the glomeruli, the Col18a1(-/-) glomeruli being ∼30% softer than the wild-type. Analysis of promoter-specific knockouts (Col18a1(P1/P1) and Col18a1(P2/P2)) indicated that tubular BM loosening is due to a lack of the shortest isoform, whereas the glomerular podocyte effacement was due to a lack of the longer isoforms. We suggest that lack of collagen XVIII may also have disparate effects on kidney function in man, but considering the mild physiological findings in the mutant mice, such effects may manifest themselves only late in life or require other compounding molecular changes.


Assuntos
Colágenos Fibrilares/metabolismo , Membrana Basal Glomerular/metabolismo , Túbulos Renais Proximais/metabolismo , Podócitos/metabolismo , Animais , Elasticidade , Feminino , Colágenos Fibrilares/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
5.
Invest Ophthalmol Vis Sci ; 63(11): 1, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190459

RESUMO

Purpose: Defects in the iridocorneal angle tissues, including the trabecular meshwork (TM) and Schlemm's canal (SC), impair aqueous humor flow and increase the intraocular pressure (IOP), eventually resulting in glaucoma. Activation of endothelial tyrosine kinase receptor Tie2 by angiopoietin-1 (Angpt1) has been demonstrated to be essential for SC formation, but roles of the other two Tie2 ligands, Angpt2 and Angpt4, have been controversial or not yet characterized, respectively. Methods: Angpt4 expression was investigated using genetic cell fate mapping and reporter mice. Congenital deletion of Angpt2 and Angpt4 and tamoxifen-inducible deletion of Angpt1 in mice were used to study the effects of Angpt4 deletion alone and in combination with the other angiopoietins. SC morphology was examined with immunofluorescent staining. IOP measurements, electron microscopy, and histologic evaluation were used to study glaucomatous changes. Results: Angpt4 was postnatally expressed in the TM. While Angpt4 deletion alone did not affect SC and Angpt4 deletion did not aggravate Angpt1 deletion phenotype, absence of Angpt4 combined with Angpt2 deletion had detrimental effects on SC morphology in adult mice. Consequently, Angpt2-/-;Angpt4-/- mice displayed glaucomatous changes in the eye. Mice with Angpt2 deletion alone showed only moderate SC defects, but Angpt2 was necessary for proper limbal vasculature development. Mechanistically, analysis of Tie2 phosphorylation suggested that Angpt2 and Angpt4 cooperate as agonistic Tie2 ligands in maintaining SC integrity. Conclusions: Our results indicated an additive effect of Angpt4 in SC maintenance and Tie2 activation and a spatiotemporally regulated interplay between the angiopoietins in the mouse iridocorneal angle.


Assuntos
Angiopoietina-2 , Angiopoietinas , Glaucoma , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Angiopoietinas/genética , Animais , Humor Aquoso/metabolismo , Glaucoma/patologia , Pressão Intraocular , Camundongos , Tamoxifeno , Malha Trabecular/metabolismo
6.
Cancer Res ; 81(1): 129-143, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037065

RESUMO

Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443), a genetic model for breast cancer and metastasis (MMTV-PyMT), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro, ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5ß1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer.See related commentary by Kamiyama and Augustin, p. 35.


Assuntos
Neoplasias Pulmonares , Melanoma , Angiopoietina-1 , Angiopoietina-2/genética , Angiopoietinas , Animais , Neoplasias Pulmonares/genética , Camundongos , Neovascularização Patológica/genética , Remodelação Vascular
7.
Sci Transl Med ; 12(560)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908006

RESUMO

Primary lymphedema is caused by developmental and functional defects of the lymphatic vascular system that result in accumulation of protein-rich fluid in tissues, resulting in edema. The 28 currently known genes causing primary lymphedema can explain <30% of cases. Angiopoietin 1 (ANGPT1) and ANGPT2 function via the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) receptor complex and α5ß1 integrin to form an endothelial cell signaling pathway that is critical for blood and lymphatic vessel formation and remodeling during embryonic development, as well as for homeostasis of the mature vasculature. By screening a cohort of 543 individuals affected by primary lymphedema, we identified one heterozygous de novo ANGPT2 whole-gene deletion and four heterozygous ANGPT2 missense mutations. Functional analyses revealed three missense mutations that resulted in decreased ANGPT2 secretion and inhibited the secretion of wild-type (WT)-ANGPT2, suggesting that they have a dominant-negative effect on ANGPT2 signaling. WT-ANGPT2 and soluble mutants T299M and N304K activated TIE1 and TIE2 in an autocrine assay in human lymphatic endothelial cells. Molecular modeling and biophysical studies showed that amino-terminally truncated ANGPT subunits formed asymmetrical homodimers that bound TIE2 in a 2:1 ratio. The T299M mutant, located in the dimerization interphase, showed reduced integrin α5 binding, and its expression in mouse skin promoted hyperplasia and dilation of cutaneous lymphatic vessels. These results demonstrate that primary lymphedema can be associated with ANGPT2 mutations and provide insights into TIE1 and TIE2 activation mechanisms.


Assuntos
Células Endoteliais , Linfedema , Angiopoietina-1/genética , Angiopoietina-2/genética , Feminino , Humanos , Linfangiogênese , Linfedema/genética , Mutação/genética , Gravidez , Receptor TIE-2/genética , Transdução de Sinais
8.
Matrix Biol ; 27(6): 535-46, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18455382

RESUMO

Endostatin, the C-terminal fragment of collagen XVIII, is known to suppress tumour growth and angiogenesis by inhibiting endothelial cell proliferation and migration. We have previously shown that endostatin and its precursor are important for the structural organization of basement membranes (BM). The aim of this study was to investigate cutaneous wound healing in mice overexpressing endostatin in keratinocytes (ES-tg) and in mice lacking collagen XVIII (Col18a1(-/-)). Excisional wounds were made on the dorsal skin of mice, the wound areas were measured and the wounds were collected for further analyses after 3, 6 or 14 days. The healing of the wounds was delayed in the ES-tg mice and accelerated in the Col18a1(-/-) mice, and the vascularisation rate was accelerated in the Col18a1(-/-) mice, but not affected in the ES-tg mice. Abnormal capillaries with swollen endothelial cells and narrowed lumens were observed in the wounds of the ES-tg mice. In these mice also the formation of the epidermal BM was delayed, and the structure of the epidermal and capillary BMs was more disorganised. Moreover, detachment of the epidermis from the granulation tissue was observed in half (n=10) of the 6-day-old ES-tg wounds, but in none of the controls, suggesting an increased fragility of the epidermal-dermal junction in the presence of an excess of endostatin.


Assuntos
Colágeno Tipo XVIII/metabolismo , Endostatinas/metabolismo , Cicatrização/fisiologia , Animais , Apoptose , Membrana Basal/fisiologia , Capilares/anatomia & histologia , Capilares/metabolismo , Capilares/patologia , Colágeno Tipo XVIII/genética , Endostatinas/genética , Células Endoteliais/fisiologia , Queratinócitos/citologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Pele/anatomia & histologia , Pele/metabolismo , Pele/patologia
9.
Elife ; 72018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30444491

RESUMO

The maintenance of fluid homeostasis is necessary for function of the neural retina; however, little is known about the significance of potential fluid management mechanisms. Here, we investigated angiopoietin-4 (Angpt4, also known as Ang3), a poorly characterized ligand for endothelial receptor tyrosine kinase Tie2, in mouse retina model. By using genetic reporter, fate mapping, and in situ hybridization, we found Angpt4 expression in a specific sub-population of astrocytes at the site where venous morphogenesis occurs and that lower oxygen tension, which distinguishes peripheral and venous locations, enhances Angpt4 expression. Correlating with its spatiotemporal expression, deletion of Angpt4 resulted in defective venous development causing impaired venous drainage and defects in neuronal cells. In vitro characterization of angiopoietin-4 proteins revealed both ligand-specific and redundant functions among the angiopoietins. Our study identifies Angpt4 as the first growth factor for venous-specific development and its importance in venous remodeling, retinal fluid clearance and neuronal function.


Assuntos
Angiopoietinas/metabolismo , Neovascularização Fisiológica , Fluxo Sanguíneo Regional , Retina/fisiologia , Veias/fisiologia , Angiopoietinas/genética , Animais , Astrócitos/enzimologia , Células Cultivadas , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Cell Metab ; 23(4): 712-24, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27076080

RESUMO

Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic health without changes in body weight or ectopic lipid deposition. Mechanistically, the binding of VEGFB to VEGF receptor 1 (VEGFR1, also known as Flt1) activated the VEGF/VEGFR2 pathway and increased capillary density, tissue perfusion, and insulin supply, signaling, and function in adipose tissue. Furthermore, endothelial Flt1 gene deletion enhanced the effect of VEGFB, activating the thermogenic program in subcutaneous adipose tissue, which increased the basal metabolic rate, thus preventing diet-induced obesity and related metabolic complications. In obese and insulin-resistant mice, Vegfb gene transfer, together with endothelial Flt1 gene deletion, induced weight loss and mitigated the metabolic complications, demonstrating the therapeutic potential of the VEGFB/VEGFR1 pathway.


Assuntos
Tecido Adiposo/irrigação sanguínea , Obesidade/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Obesidade/complicações , Obesidade/patologia
11.
Mech Dev ; 114(1-2): 109-13, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12175494

RESUMO

Xenopus laevis type XVIII collagen occurs in three variants, 22 + 1285 amino acid residues (signal peptide + mature protein), 23 + 1581 residues and 23 + 1886 residues in length, differing in their N-terminal non-collagenous domains. The region showing highest homology to mammalian counterparts is the C-terminal endostatin domain. All three variants are expressed, at different levels, during early and late stages of development, as demonstrated by reverse transcription-polymerase chain reaction. Whole-mount in situ hybridization shows that the short variant is expressed at high levels in the developing eye, the central nervous system, the otic vesicle, the head mesenchyme, the branchial arches and the pronephros, and at the boundaries between somites. The middle variant is expressed in the head mesenchyme, the branchial arches, the peripheral nervous system, the pronephros and the pronephric duct, and at the somite boundaries. The longest variant is weakly expressed in the head mesenchyme and branchial arches.


Assuntos
Colágeno/genética , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/embriologia , Processamento Alternativo , Animais , Clonagem Molecular , Colágeno Tipo XVIII , DNA Complementar/metabolismo , Hibridização In Situ , Modelos Genéticos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Matrix Biol ; 22(5): 427-42, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14614989

RESUMO

Human type XVIII collagen was found to be expressed as three variants, termed NC1-303, NC1-493 and NC1-728, differing in their N-terminal non-collagenous domains (NC1). The corresponding gene was found to be approximately 105 kb in size and contain 43 exons. The short variant is derived from utilization of an upstream promoter associated with the first two exons of the gene. The two other variants are derived from a downstream promoter and alternative splicing of exon 3, resulting in 192 residues of shared sequences characterized by a putative approximately 30 residue conserved coiled-coil motif and 235 residues of sequences specific to NC1-728. The NC1-728 variant has a conserved cysteine-rich domain homologous with the ligand-binding part of the frizzled proteins. A polyclonal antibody specific to the NC1-728 variant was generated, and immunostaining of fetal tissues revealed staining in lung and skeletal muscle. Human serum contained 173- and 144-kDa alpha1(XVIII) chains corresponding to the NC1-728 and NC1-493 variants, respectively. A 200-kDa polypeptide was detected in cells transfected with a cDNA construct corresponding to the full-length NC1-728 variant, and EBNA-293 cells endogenously synthesizing low amounts of type XVIII collagen had a 45-kDa fragment in their culture medium that corresponded to most of the NC1 domain of the NC1-728 variant, suggesting processing of the N-terminal frizzled-containing domain.


Assuntos
Colágeno Tipo XVIII/química , Colágeno Tipo XVIII/genética , Processamento Alternativo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Cisteína/química , DNA Complementar/metabolismo , Éxons , Variação Genética , Humanos , Imuno-Histoquímica , Íntrons , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Peptídeos/química , Testes de Precipitina , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
13.
J Clin Invest ; 124(2): 824-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24430181

RESUMO

The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.


Assuntos
Angiopoietina-1/antagonistas & inibidores , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Deleção de Genes , Receptor de TIE-1/genética , Vasos Retinianos/patologia , Inibidores da Angiogênese/química , Angiopoietina-1/metabolismo , Animais , Apoptose , Sobrevivência Celular , Homozigoto , Ligantes , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Neovascularização Patológica , Fenótipo , Receptor de TIE-1/fisiologia , Receptor TIE-2/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
PLoS One ; 5(7): e11549, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20657839

RESUMO

BACKGROUND: Laminin alpha2 chain mutations cause congenital muscular dystrophy with dysmyelination neuropathy (MDC1A). Previously, we demonstrated that laminin alpha1 chain ameliorates the disease in mice. Dystroglycan and integrins are major laminin receptors. Unlike laminin alpha2 chain, alpha1 chain binds the receptors by separate domains; laminin globular (LG) domains 4 and LG1-3, respectively. Thus, the laminin alpha1 chain is an excellent tool to distinguish between the roles of dystroglycan and integrins in the neuromuscular system. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide insights into the functions of laminin alpha1LG domains and the division of their roles in MDC1A pathogenesis and rescue. Overexpression of laminin alpha1 chain that lacks the dystroglycan binding LG4-5 domains in alpha2 chain deficient mice resulted in prolonged lifespan and improved health. Importantly, diaphragm and heart muscles were corrected, whereas limb muscles were dystrophic, indicating that different muscles have different requirements for LG4-5 domains. Furthermore, the regenerative capacity of the skeletal muscle did not depend on laminin alpha1LG4-5. However, this domain was crucial for preventing apoptosis in limb muscles, essential for myelination in peripheral nerve and important for basement membrane assembly. CONCLUSIONS/SIGNIFICANCE: These results show that laminin alpha1LG domains and consequently their receptors have disparate functions in the neuromuscular system. Understanding these interactions could contribute to design and optimization of future medical treatment for MDC1A patients.


Assuntos
Laminina/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Membrana Basal/metabolismo , Membrana Basal/patologia , Peso Corporal/fisiologia , Creatina Quinase/metabolismo , Distroglicanas/genética , Distroglicanas/metabolismo , Immunoblotting , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Laminina/genética , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
15.
PLoS One ; 3(4): e1878, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18382662

RESUMO

Collagens contain cryptic polypeptide modules that regulate major cell functions, such as cell proliferation or death. Collagen XVIII (C18) exists as three amino terminal end variants with specific amino terminal polypeptide modules. We investigated the function of the variant 3 of C18 (V3C18) containing a frizzled module (FZC18), which carries structural identity with the extracellular cysteine-rich domain of the frizzled receptors. We show that V3C18 is a cell surface heparan sulfate proteoglycan, its topology being mediated by the FZC18 module. V3C18 mRNA was expressed at low levels in 21 normal adult human tissues. Its expression was up-regulated in fibrogenesis and in small well-differentiated liver tumors, but decreased in advanced human liver cancers. Low FZC18 immunostaining in liver cancer nodules correlated with markers of high Wnt/beta-catenin activity. V3C18 (M(r) = 170 kD) was proteolytically processed into a cell surface FZC18-containing 50 kD glycoprotein precursor that bound Wnt3a in vitro through FZC18 and suppressed Wnt3a-induced stabilization of beta-catenin. Ectopic expression of either FZC18 (35 kD) or its 50 kD precursor inhibited Wnt/beta-catenin signaling in colorectal and liver cancer cell lines, thus downregulating major cell cycle checkpoint gatekeepers cyclin D1 and c-myc and reducing tumor cell growth. By contrast, full-length V3C18 was unable to inhibit Wnt signaling. In summary, we identified a cell-surface signaling pathway whereby FZC18 inhibits Wnt/beta-catenin signaling. The signal, encrypted within cell-surface C18, is released by enzymatic processing as an active frizzled cysteine-rich domain (CRD) that reduces cancer cell growth. Thus, extracellular matrix controls Wnt signaling through a collagen-embedded CRD behaving as a cell-surface sensor of proteolysis, conveying feedback cues to control cancer cell fate.


Assuntos
Colágeno/fisiologia , Receptores Frizzled/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Membrana Celular/metabolismo , Colágeno/química , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
16.
Cancer Res ; 67(24): 11528-35, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089781

RESUMO

Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis and tumor growth. We studied the development of carcinogen-induced skin tumors in transgenic J4 mice overexpressing endostatin in their keratinocytes. Unexpectedly, we did not observe any differences in tumor incidence and multiplicity between these and control mice, nor in the rate of conversion of benign papillomas to malignant squamous cell carcinomas (SCC). We did find, however, that endostatin regulates the terminal differentiation of keratinocytes because the SCCs in the J4 mice were less aggressive and more often well differentiated than those in the control mice. We observed an inhibition of tumor angiogenesis by endostatin at an early stage in skin tumor development, but more strikingly, there was a significant reduction in lymphatic vessels in the papillomas and SCCs in association with elevated endostatin levels and also a significant inhibition of lymph node metastasis in the J4 mice. We showed that tumor-infiltrating mast cells strongly expressed vascular endothelial growth factor-C (VEGF-C), and that the accumulation of these cells was markedly decreased in the tumors of the J4 mice. Moreover, endostatin inhibited the adhesion and migration of murine MC/9 mast cells on fibronectin in vitro. Our data suggest that endostatin can inhibit tumor lymphangiogenesis by decreasing the VEGF-C levels in the tumors, apparently via inhibition of mast cell migration and adhesion, and support the view that the biological effects of endostatin are not restricted to endothelial cells because endostatin also regulates tumor-associated inflammation and differentiation, and the phenotype of epithelial tumors.


Assuntos
Endostatinas/genética , Metástase Linfática/prevenção & controle , Neovascularização Patológica/prevenção & controle , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Apoptose/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética
17.
Am J Pathol ; 166(1): 221-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15632014

RESUMO

Endostatin, a proteolytic fragment of type XVIII collagen, has been shown to inhibit angiogenesis, tumor growth, and endothelial cell proliferation and migration. We analyzed its functions in vivo by generating transgenic mice in which it was overexpressed in the skin and lens capsule under the keratin K14 promoter. Opacity of the lens occurred at 4 months of age in the mouse line J4, with the highest level of endostatin expression. The lens epithelial cells appeared to lose contact with the capsule and began to vacuolize. In 1-year-old mice the lens epithelial cell layer had entirely degenerated, and instead, large plaques of spindle-shaped cells had formed in the anterior region of the lens. Moreover, a widening of the epidermal basement membrane (BM) zone of the skin was observed in electron microscopy. The epidermal BM was conspicuously altered in the J4 mice with high transgene expression, including clear broadening and occurrence of pearl-like protrusions in some areas, whereas the BM was more even in appearance but consistently broadened in the mouse line G20 with moderate transgene expression. In both lines the BM was continuous. Measurements indicated that the lamina densa was 78.54 +/- 53.10 nm in line J4, the large variation reflecting the protrusions of the lamina densa, and 44.24 +/- 11.52 nm in line G20, compared with 33.74 +/- 9.96 nm in wild-type adult mice. Immunoelectron microscopy of wild-type mouse skin type XVIII collagen showed a polarized orientation in the BMs, with the C-terminal endostatin region localized in the lamina densa and the N terminus in average approximately 40 nm more on the dermal side. Type XVIII collagen was dispersed in the transgenic skin, suggesting that the transgene-derived endostatin fragment displaces the full-length collagen XVIII. This may impair the anchoring of the lamina densa to the dermis and thereby lead to loosening of the BMs, resembling the previously observed situation in collagen XVIII-null mice.


Assuntos
Membrana Basal/patologia , Catarata/patologia , Endostatinas/fisiologia , Cristalino/patologia , Pele/patologia , Inibidores da Angiogênese , Animais , Membrana Basal/ultraestrutura , Primers do DNA , Humanos , Cristalino/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Reação em Cadeia da Polimerase , Pele/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA