Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(6): e2200654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002183

RESUMO

New derivatives of 2-phenylquinazolin-4(3H)-one were designed, synthesized, and biologically evaluated as potent allosteric kinase inhibitors with in situ cytotoxicity against MCF-7 and HepG2 cells. Compounds 15 and 18 among the proposed compounds showed promising antiproliferative activity against MCF-7 (IC50 = 1.35 µM) and HepG2 cells (IC50 = 3.24 µM), comparable to sorafenib, with IC50 values of 3.04, 2.93 µM, respectively, according to in situ cytotoxicity testing. Comparing compounds 15 and 18 to sorafenib, the in vitro VEGFR-2 inhibitory activity displayed encouraging selective efficacy with IC50 values of 13, 67, and 30 nM, respectively. Results of VEGFR-2 inhibition at various ATP concentrations proved that there was no statistically significant difference between the IC50 values, which improved the non-ATP competitive binding. Compound 15 caused apoptotic breast cancer cell death with 55.11-fold cell-cycle arrest at the S-phase, where it affected the apoptosis-mediated genes through upregulating P53, Bax, caspases 3, 8, and 9 and downregulating the antiapoptotic gene Bcl-2. A molecular docking study was conducted to confirm the binding of the designed compounds to the allosteric site of VEGFR-2 in DFG-out mode, leaving the ATP-binding pocket unoccupied when superimposed to the pose of sorafenib. The designed molecules showed resealable binding affinity toward the DFG loop and the allosteric site. Hence, the 2-phenylquinazolin-4(3H)-one derivative constitutes intriguing starting points for designing apoptotic-inducing drugs.


Assuntos
Antineoplásicos , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
2.
Arch Pharm (Weinheim) ; 353(2): e1900108, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894866

RESUMO

Two series of thieno[2,3-d][1,2,3]triazine derivatives were designed, synthesized, and biologically evaluated as potential epidermal growth factor receptor (EGFR) inhibitors targeting the non-small-cell lung cancer cell line H1299. Most of the synthesized compounds displayed IC50 values ranging from 25 to 58 nM against H1299, which are superior to that of gefitinib (40 µM). 3-(5,6,7,8-Tetrahydro-7H-cyclohexa[4:5]thieno[2,3-d]-1,2,3-triazin-4-ylamino)benzene-1,3-diamine (6b) achieved the highest cytotoxic activity against H1299 with an IC50 value of 25 nM; it had the ability to decrease the EGFR concentration in H1299 cells from 7.22 to 2.67 pg/ml. In vitro, the IC50 value of compound 6b was 0.33 nM against EGFR, which is superior to that of gefitinib at 1.9 nM and erlotinib at 4 nM. The three-dimensional quantitative structure-activity relationships and molecular modeling studies revealed comparable binding modes of compound 6b, gefitinib, and erlotinib in the EGFR active site. The in silico ADME (absorption, distribution, metabolism, and excretion) prediction parameters of this compound revealed promising pharmacokinetic and physicochemical properties. Moreover, DFT (density functional theory) calculations showed the high reactivity of compound 6b toward the EGFR compared with other compounds. The designed compound 6b might serve as an encouraging lead compound for the discovery of promising anti-lung cancer agents targeting EGFR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Triazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Modelos Moleculares , Estrutura Molecular , Triazinas/síntese química , Triazinas/química , Células Tumorais Cultivadas
3.
RSC Med Chem ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39345715

RESUMO

VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 µM, respectively, compared to curcumin (IC50 = 13.8 µM) and sorafenib (IC50 = 2.13 µM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.

4.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172102

RESUMO

Targeting of cyclooxygenase-2 (COX-2) has emerged as a powerful tool for therapeutic intervention because the overexpression of this enzyme is synonymous with inflammation, cancer, and neurodegenerative diseases. Herein, a new series of 1,2,4-triazole Schiff bases scaffold with aryl and heteroaryl systems 9a-12d were designed, synthesized, structurally elucidated, and biologically evaluated as a potent COX-2 blocker. The rationale beyond the current study is to increase the molecule bulkiness allowing a selective binding to the unique hydrophobic pocket of COX-2. Among the triazole-thiazole hybrids, the one with the para-methoxy moiety linked to a phenyl ring 12d showed the highest In vitro selectivity by COX-2 inhibition assay (IC50 of 0.04 µM) and in situ anti-inflammatory activity when evaluated using the protein denaturation assay (IC50 of 0.88 µM) in comparison with commercially available selective COX-2 inhibitor, Celecoxib (IC50 of 0.05 µM). Towards the COX-2 selectivity, ligand-based three dimensional quantitative structures activity relationship (3D-QSAR) employing atomic-based and field-based approaches were performed and resulted in the necessity of triazole and thiazole/oxazole scaffolds for COX-2 blocking. Furthermore, the molecular modeling study indicated a high selectivity and promising affinity of our prepared compounds to COX-2, especially the hydrophobic pocket and the mouth of the active site holding hydrogen-bonding, hydrophobic, and electrostatic interactions. In Silico absorption, delivery, metabolism, and excretion (ADME) predictions showed that all the pharmacokinetic and physicochemical features are within the appropriate range for human use.

5.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374155

RESUMO

Dual targeting of epidermal growth factor receptor (EGFR) and human EGFR-related receptor 2 (HER2) is a proven approach for the treatment of lung cancer. With the aim of discovering effective dual EGFR/HER2 inhibitors targeting non-small cell lung cancer cell line H1299, three series of thieno[2,3-d][1,2,3]triazine and acetamide derivatives were designed, synthesized, and biologically evaluated. The synthesized compounds displayed IC50 values ranging from 12 to 54 nM against H1299, which were superior to that of gefitinib (2) at 40 µM. Of the synthesized compounds, 2-(1H-pyrazolo[3,4-b]pyridin-3-ylamino)-N-(3-cyano4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)acetamide (21a) achieved the highest in vitro cytotoxic activity against H1299, with an IC50 value of 12.5 nM in situ, and 0.47 and 0.14 nM against EGFR and HER2, respectively, values comparable to the IC50 of the approved drug imatinib (1). Our synthesized compounds were promising, demonstrating high selectivity and affinity for EGFR/HER2, especially the hinge region forming a hydrophobic pocket, which was mediated by hydrogen bonding as well as hydrophobic and electrostatic interactions, as indicated by molecular modeling. Moreover, the designed compounds showed good affinity for T790M EGFR, one of the main mutants resulting in acquired drug resistance. Furthermore, both pharmacokinetic and physicochemical properties of the designed compounds were within the appropriate range for human usage as predicted by the in Silico ADME study. The designed compound (21a) might serve as an encouraging lead compound for the discovery of promising anti-lung cancer agents targeting EGFR/HER2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA