Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Theor Biol ; 526: 110776, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058226

RESUMO

Continuous Glucose Monitoring (CGM) produces long time-series of noisy observations of a single variable (tissue glucose concentration), whose evolution may be explained by a dynamical model. In order to represent the unknown mixture of possible control mechanisms of different orders affecting the measured variable, a fractional differential approach seems justified. In any case, variations in food intake and/or physical activity ought to be taken into account if a plausible interpretation of the dynamics is to be obtained. In the present work, the mathematical construction and the numerical implementation of a Fractional Differential Equations (FDE) initial value problem are systematically reviewed, with the intent of offering the reader a concise and mathematically rigorous description of this approach. An FDE model for CGM is formulated: the model includes compartments for stomach and intestinal glucose contents and for blood and tissue (subcutaneous) glucose concentrations, as well as the shock effects of food ingestion and of increased glucose consumption due to physical activity. The model parameters, including the (non-integer) order of differentiation, are estimated from CGM observations on six Type 1 diabetic patients. The best-fit fractional orders for the six subjects range from 1.59 to 2.13. For comparison, best fits have also been computed for all subjects using an average fractional order of 1.9 and integer orders of 1 and 2.The results indicate that in the case of CGM the fractional differential model, which should be physiologically more appropriate, in fact fits the data much better than the first-order model and also better than the 2nd-order model.


Assuntos
Automonitorização da Glicemia , Diabetes Mellitus Tipo 1 , Glicemia , Glucose , Humanos
2.
PLoS Pathog ; 14(2): e1006883, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444189

RESUMO

Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines.


Assuntos
Antígenos Virais/imunologia , Apresentação Cruzada/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Epitopos Imunodominantes/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos Virais/metabolismo , Células Cultivadas , Chlorocebus aethiops , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Vero
3.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179532

RESUMO

The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.


Assuntos
Modelos Animais de Doenças , Herpesviridae/classificação , Herpesvirus Humano 6/genética , Herpesvirus Humano 7/genética , Depleção Linfocítica , Infecções por Roseolovirus/virologia , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , DNA Viral/genética , Genoma Viral/genética , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Timo/virologia
4.
PLoS Genet ; 11(8): e1005434, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291965

RESUMO

Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection.


Assuntos
Proteínas de Protozoários/genética , Doenças dos Roedores/parasitologia , Toxoplasma/genética , Toxoplasmose Animal/parasitologia , Sequência de Aminoácidos , Animais , Animais não Endogâmicos , Variações do Número de Cópias de DNA , Dados de Sequência Molecular , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Locos de Características Quantitativas , América do Sul , Toxoplasma/patogenicidade , Virulência/genética , Fatores de Virulência/genética
5.
Math Comput Simul ; 146: 70-89, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32288111

RESUMO

An SEQIJR model of epidemic disease transmission which includes immunization and a varying population size is studied. The model includes immunization of susceptible people (S), quarantine (Q) of exposed people (E), isolation (J) of infectious people (I), a recovered population (R), and variation in population size due to natural births and deaths and deaths of infected people. It is shown analytically that the model has a disease-free equilibrium state which always exists and an endemic equilibrium state which exists if and only if the disease-free state is unstable. A simple formula is obtained for a generalized reproduction number R g where, for any given initial population, R g < 1 means that the initial population is locally asymptotically stable and R g > 1 means that the initial population is unstable. As special cases, simple formulas are given for the basic reproduction number R 0 , a disease-free reproduction number R d f , and an endemic reproduction number R e n . Formulas are derived for the sensitivity indices for variations in model parameters of the disease-free reproduction number R d f and for the infected populations in the endemic equilibrium state. A simple formula in terms of the basic reproduction number R 0 is derived for the critical immunization level required to prevent the spread of disease in an initially disease-free population. Numerical simulations are carried out using the Matlab program for parameters corresponding to the outbreaks of severe acute respiratory syndrome (SARS) in Beijing, Hong Kong, Canada and Singapore in 2002 and 2003. From the sensitivity analyses for these four regions, the parameters are identified that are the most important for preventing the spread of disease in a disease-free population or for reducing infection in an infected population. The results support the importance of isolating infectious individuals in an epidemic and in maintaining a critical level of immunity in a population to prevent a disease from occurring.

6.
Ann Oncol ; 28(4): 748-753, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327999

RESUMO

Background: We sought to identify genomic alterations (GAs) in salivary mucoepidermoid carcinomas. Patients and methods: DNA was extracted from 48 mucoepidermoid carcinomas. Comprehensive genomic profiling (CGP) including the calculation to tumor mutational burden (TMB) was performed on hybridization-captured adaptor ligation-based libraries of 315 cancer-related genes plus introns from 28 genes frequently rearranged for cancer and evaluated for all classes of GAs. Results: A total of 183 GAs were found in 80 unique genes. High-grade tumors had more GAs (mean 5 ± 3.8) compared with low (2.3 ± 1.4) or intermediate (2.6 ± 1.5) (P = 0.019). TP53 GAs were seen in all tumor grades (41.7%) but were most common in high-grade malignancies (56%) (P = 0.047). CDKN2A GAs were seen in 41.6% of tumors. PI3K/mTOR pathway activation, including PI3KCA mutations, were more common in high grade (52%) than in low- and intermediate-grade tumors (4.3%) (P = 0.007). BAP1 GAs were observed in 20.8% of tumors and BRCA1/2 GAs present in 10.5% of specimens. ERBB2 amplifications were seen in only 8.3% of tumors. The TMB for this patient group was relatively low with only 5 (10%) of cases having greater than 10 mutations/megabase of sequenced DNA. Conclusion: CGP of salivary mucoepidermoid carcinomas revealed diverse GAs that may lead to customized treatment options for patients with these rare tumors.


Assuntos
Carcinoma Mucoepidermoide/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias das Glândulas Salivares/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
7.
Ann Oncol ; 28(10): 2539-2546, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961851

RESUMO

BACKGROUND: Relapsed/metastatic salivary gland carcinomas (SGCs) have a wide diversity of histologic subtypes associated with variable clinical aggressiveness and response to local and systemic therapies. We queried whether comprehensive genomic profiling could define the tumor subtypes and uncover clinically relevant genomic alterations, revealing new routes to targeted therapies for patients with relapsed and metastatic disease. PATIENTS AND METHODS: From a series of 85 686 clinical cases, DNA was extracted from 40 µm of formalin-fixed paraffin embedded (FFPE) sections for 623 consecutive SGC. CGP was carried out on hybridization-captured, adaptor ligation-based libraries (mean coverage depth, >500×) for up to 315 cancer-related genes. Tumor mutational burden was determined on 1.1 Mb of sequenced DNA. All classes of alterations, base substitutions, short insertions/deletions, copy number changes, and rearrangements/fusions were determined simultaneously. RESULTS: The clinically more indolent SGC including adenoid cystic carcinoma, acinic cell carcinoma, polymorphous low-grade adenocarcinoma, mammary analog secretory carcinoma, and epithelial-myoepithelial carcinomas have significantly fewer genomic alterations, TP53 mutations, and lower tumor mutational burden than the typically more aggressive SGCs including mucoepidermoid carcinoma, salivary duct carcinoma, adenocarcinoma, not otherwise specified, carcinoma NOS, and carcinoma ex pleomorphic adenoma. The more aggressive SGCs are commonly driven by ERBB2 PI3K pathway genomic alterations. Additional targetable GAs are frequently seen. CONCLUSIONS: Genomic profiling of SGCs demonstrates important differences between traditionally indolent and aggressive cancers. These differences may provide therapeutic options in the future.


Assuntos
Carcinoma/genética , Recidiva Local de Neoplasia/genética , Neoplasias das Glândulas Salivares/genética , Idoso , Carcinoma/patologia , DNA de Neoplasias/genética , Feminino , Formaldeído , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Inclusão em Parafina , Neoplasias das Glândulas Salivares/patologia , Fixação de Tecidos
8.
Ann Oncol ; 27(7): 1336-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052656

RESUMO

BACKGROUND: Squamous cell cancers of the anal canal (ASCC) are increasing in frequency and lack effective therapies for advanced disease. Although an association with human papillomavirus (HPV) has been established, little is known about the molecular characterization of ASCC. A comprehensive genomic analysis of ASCC was undertaken to identify novel genomic alterations (GAs) that will inform therapeutic choices for patients with advanced disease. PATIENTS AND METHODS: Hybrid-capture-based next-generation sequencing of exons from 236 cancer-related genes and intronic regions from 19 genes commonly rearranged in cancer was performed on 70 patients with ASCC. HPV status was assessed by aligning tumor sequencing reads to HPV viral genomes. GAs were identified using an established algorithm and correlated with HPV status. RESULTS: Sixty-one samples (87%) were HPV-positive. A mean of 3.5 GAs per sample was identified. Recurrent alterations in phosphoinositol-3-kinase pathway (PI3K/AKT/mTOR) genes including amplifications and homozygous deletions were present in 63% of cases. Clinically relevant GAs in genes involved in DNA repair, chromatin remodeling, or receptor tyrosine kinase signaling were observed in 30% of cases. Loss-of-function mutations in TP53 and CDKN2A were significantly enhanced in HPV-negative cases (P < 0.0001). CONCLUSIONS: This is the first comprehensive genomic analysis of ASCC, and the results suggest new therapeutic approaches. Differing genomic profiles between HPV-associated and HPV-negative ASCC warrants further investigation and may require novel therapeutic and preventive strategies.


Assuntos
Neoplasias do Ânus/genética , Carcinoma de Células Escamosas/genética , Inibidor de Quinase Dependente de Ciclina p18/genética , Genômica , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Ânus/patologia , Neoplasias do Ânus/virologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Inibidor p16 de Quinase Dependente de Ciclina , Éxons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/patogenicidade , Fatores de Transcrição/genética
10.
J Virol ; 88(1): 403-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155395

RESUMO

Human cytomegalovirus (CMV) enters its host via the oral and genital mucosae. Langerhans-type dendritic cells (LC) are the most abundant innate immune cells at these sites, where they constitute a first line of defense against a variety of pathogens. We previously showed that immature LC (iLC) are remarkably resistant to CMV infection, while mature LC (mLC) are more permissive, particularly when exposed to clinical-strain-like strains of CMV, which display a pentameric complex consisting of the viral glycoproteins gH, gL, UL128, UL130, and UL131A on their envelope. This complex was recently shown to be required for the infection of immature monocyte-derived dendritic cells. We thus sought to establish if the presence of this complex is also necessary for virion penetration of LC and if defects in entry might be the source of iLC resistance to CMV. Here we report that the efficiency of LC infection is reduced, but not completely abolished, in the absence of the pentameric complex. While virion penetration and nuclear deposition of viral genomes are not impaired in iLC, the transcription of the viral immediate early genes UL122 and UL123 and of the delayed early gene UL50 is substantially lower than that in mLC. Together, these data show that the UL128, UL130, and UL131A proteins are dispensable for CMV entry into LC and that progression of the viral cycle in iLC is restricted at the step of viral gene expression.


Assuntos
Núcleo Celular/virologia , Citomegalovirus/patogenicidade , Células Dendríticas/virologia , Genoma Viral , Ilhotas Pancreáticas/virologia , Proteínas Virais/metabolismo , Sequência de Bases , Células Cultivadas , Citomegalovirus/metabolismo , Primers do DNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Ann Rheum Dis ; 74(10): 1924-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24936585

RESUMO

OBJECTIVE: Previous work has suggested that the granulocyte macrophage colony stimulating factor (GM-CSF)-GM-CSF receptor α axis (GM-CSFRα) may provide a new therapeutic target for the treatment of rheumatoid arthritis (RA). Therefore, we investigated the cellular expression of GM-CSFRα in RA synovial tissue and investigated the effects of anti-GM-CSFRα antibody treatment in vitro and in vivo in a preclinical model of RA. METHODS: We compared GM-CSFRα expression on macrophages positive for CD68 or CD163 on synovial biopsy samples from patients with RA or psoriatic arthritis (PsA) to disease controls. In addition, we studied the effects of CAM-3003, an anti-GM-CSFR antibody in a collagen induced arthritis model of RA in DBA/1 mice. The pharmacokinetic profile of CAM-3003 was studied in naïve CD1(ICR) mice (see online supplement) and used to interpret the results of the pharmacodynamic studies in BALB/c mice. RESULTS: GM-CSFRα was expressed by CD68 positive and CD163 positive macrophages in the synovium, and there was a significant increase in GM-CSFRα positive cells in patients in patients with RA as well as patients with PsA compared with patients with osteoarthritis and healthy controls. In the collagen induced arthritis model there was a dose dependent reduction of clinical arthritis scores and the number of F4/80 positive macrophages in the inflamed synovium after CAM-3003 treatment. In BALB/c mice CAM-3003 inhibited recombinant GM-CSF mediated margination of peripheral blood monocytes and neutrophils. CONCLUSIONS: The findings support the ongoing development of therapies aimed at interfering with GM-CSF or its receptor in various forms of arthritis, such as RA and PsA.


Assuntos
Artrite Reumatoide/imunologia , Terapia de Alvo Molecular/métodos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Membrana Sinovial/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/uso terapêutico , Antirreumáticos/administração & dosagem , Antirreumáticos/sangue , Antirreumáticos/uso terapêutico , Artrite Experimental/sangue , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Psoriásica/imunologia , Estudos de Casos e Controles , Relação Dose-Resposta Imunológica , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Osteoartrite/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
12.
Malar J ; 14: 296, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243218

RESUMO

BACKGROUND: Malaria parasites that infect birds can have narrow or broad host-tropisms. These differences in host specificity make avian malaria a useful model for studying the evolution and transmission of parasite assemblages across geographic ranges. The molecular mechanisms involved in host-specificity and the biology of avian malaria parasites in general are important aspects of malaria pathogenesis that warrant further examination. Here, the transcriptome of the malaria parasite Plasmodium gallinaceum was characterized to investigate the biology and the conservation of genes across various malaria parasite species. METHODS: The P. gallinaceum transcriptome was annotated and KEGG pathway mapping was performed. The ripr gene and orthologous genes that play critical roles in the purine salvage pathway were identified and characterized using bioinformatics and phylogenetic methods. RESULTS: Analysis of the transcriptome sequence database identified essential genes of the purine salvage pathway in P. gallinaceum that shared high sequence similarity to Plasmodium falciparum when compared to other mammalian Plasmodium spp. However, based on the current sequence data, there was a lack of orthologous genes that belonged to the erythrocyte-binding-like (EBL) and reticulocyte-binding-like homologue (RH) family in P. gallinaceum. In addition, an orthologue of the Rh5 interacting protein (ripr) was identified. CONCLUSIONS: These findings suggest that the pathways involved in parasite red blood cell invasion are significantly different in avian Plasmodium parasites, but critical metabolic pathways are conserved throughout divergent Plasmodium taxa.


Assuntos
Malária Aviária/parasitologia , Plasmodium gallinaceum/genética , Plasmodium gallinaceum/metabolismo , Proteínas de Protozoários/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Galinhas , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
13.
Parasitology ; 142(5): 635-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25352083

RESUMO

The coevolutionary relationships between avian malaria parasites and their hosts influence the host specificity, geographical distribution and pathogenicity of these parasites. However, to understand fine scale coevolutionary host-parasite relationships, robust and widespread sampling from closely related hosts is needed. We thus sought to explore the coevolutionary history of avian Plasmodium and the widespread African sunbirds, family Nectariniidae. These birds are distributed throughout Africa and occupy a variety of habitats. Considering the role that habitat plays in influencing host-specificity and the role that host-specificity plays in coevolutionary relationships, African sunbirds provide an exceptional model system to study the processes that govern the distribution and diversity of avian malaria. Here we evaluated the coevolutionary histories using a multi-gene phylogeny for Nectariniidae and avian Plasmodium found in Nectariniidae. We then assessed the host-parasite biogeography and the structuring of parasite assemblages. We recovered Plasmodium lineages concurrently in East, West, South and Island regions of Africa. However, several Plasmodium lineages were recovered exclusively within one respective region, despite being found in widely distributed hosts. In addition, we inferred the biogeographic history of these parasites and provide evidence supporting a model of biotic diversification in avian Plasmodium of African sunbirds.


Assuntos
Evolução Biológica , Malária Aviária/parasitologia , Passeriformes/parasitologia , Plasmodium/fisiologia , África , Animais , Ecossistema , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Ilhas do Oceano Índico , Família Multigênica/genética , Passeriformes/classificação , Filogenia , Filogeografia , Plasmodium/classificação , Plasmodium/genética
14.
Malar J ; 13: 382, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25261185

RESUMO

BACKGROUND: Plasmodium erythrocyte invasion genes play a key role in malaria parasite transmission, host-specificity and immuno-evasion. However, the evolution of the genes responsible remains understudied. Investigating these genes in avian malaria parasites, where diversity is particularly high, offers new insights into the processes that confer malaria pathogenesis. These parasites can pose a significant threat to birds and since birds play crucial ecological roles they serve as important models for disease dynamics. Comprehensive knowledge of the genetic factors involved in avian malaria parasite invasion is lacking and has been hampered by difficulties in obtaining nuclear data from avian malaria parasites. Thus the first Illumina-based de novo transcriptome sequencing and analysis of the chicken parasite Plasmodium gallinaceum was performed to assess the evolution of essential Plasmodium genes. METHODS: White leghorn chickens were inoculated intravenously with erythrocytes containing P. gallinaceum. cDNA libraries were prepared from RNA extracts collected from infected chick blood and sequencing was run on the HiSeq2000 platform. Orthologues identified by transcriptome sequencing were characterized using phylogenetic, ab initio protein modelling and comparative and population-based methods. RESULTS: Analysis of the transcriptome identified several orthologues required for intra-erythrocytic survival and erythrocyte invasion, including the rhoptry neck protein 2 (RON2) and the apical membrane antigen-1 (AMA-1). Ama-1 of avian malaria parasites exhibits high levels of genetic diversity and evolves under positive diversifying selection, ostensibly due to protective host immune responses. CONCLUSION: Erythrocyte invasion by Plasmodium parasites require AMA-1 and RON2 interactions. AMA-1 and RON2 of P. gallinaceum are evolutionarily and structurally conserved, suggesting that these proteins may play essential roles for avian malaria parasites to invade host erythrocytes. In addition, host-driven selection presumably results in the high levels of genetic variation found in ama-1 of avian Plasmodium species. These findings have implications for investigating avian malaria epidemiology and population dynamics. Moreover, this work highlights the P. gallinaceum transcriptome as an important public resource for investigating the diversity and evolution of essential Plasmodium genes.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Plasmodium gallinaceum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Galinhas , Malária Aviária/parasitologia , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Estrutura Terciária de Proteína , Transcriptoma
15.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728394

RESUMO

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Antígenos HLA-E , Animais , Humanos , Masculino , Fosfatase Ácida , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Macaca mulatta , Mesotelina
16.
Elife ; 102021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396954

RESUMO

Natural killer (NK) cells are essential for early protection against virus infection and must metabolically adapt to the energy demands of activation. Here, we found upregulation of the metabolic adaptor hypoxia-inducible factor-1α (HIF1α) is a feature of mouse NK cells during murine cytomegalovirus (MCMV) infection in vivo. HIF1α-deficient NK cells failed to control viral load, causing increased morbidity. No defects were found in effector functions of HIF1αKO NK cells; however, their numbers were significantly reduced. Loss of HIF1α did not affect NK cell proliferation during in vivo infection and in vitro cytokine stimulation. Instead, we found that HIF1α-deficient NK cells showed increased expression of the pro-apoptotic protein Bim and glucose metabolism was impaired during cytokine stimulation in vitro. Similarly, during MCMV infection HIF1α-deficient NK cells upregulated Bim and had increased caspase activity. Thus, NK cells require HIF1α-dependent metabolic functions to repress Bim expression and sustain cell numbers for an optimal virus response.


Assuntos
Infecções por Citomegalovirus/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Muromegalovirus/fisiologia , Animais , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos
17.
Open Forum Infect Dis ; 8(1): ofaa606, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511233

RESUMO

BACKGROUND: Experimental human immunodeficiency virus (HIV)-1 vaccines frequently elicit antibodies against HIV-1 that may react with commonly used HIV diagnostic tests, a phenomenon known as vaccine-induced seropositivity/seroreactivity (VISP/VISR). We sought to determine, under clinic conditions, whether a patient-controlled HIV test, OraQuick ADVANCE Rapid HIV-1/2 Antibody Test, detected HIV-1 vaccine-induced antibodies. METHODS: Plasma assessment of HIV-1 cross-reactivity was examined in end-of-study samples from 57 healthy, HIV-uninfected participants who received a candidate vaccine that has entered Phase 2B and 3 testing. We also screened 120 healthy, HIV-uninfected, unblinded HIV-1 vaccine participants with VISP/VISR for an assessment using saliva. These participants came from 21 different parent vaccine protocols representing 17 different vaccine regimens, all of which contained an HIV-1 envelope immunogen. OraQuick ADVANCE was compared with results from concurrent blood samples using a series of commercial HIV screening immunoassays. RESULTS: Fifty-seven unique participant plasma samples were assayed in vitro, and only 1 (1.8%) was reactive by OraQuick ADVANCE. None of the 120 clinic participants (0%; 95% confidence interval, 0% to 3.7%) tested positive by OraQuick ADVANCE, and all were confirmed to be uninfected by HIV-1 viral ribonucleic acid testing. One hundred eighteen of the 120 (98.3%) participants had a reactive HIV test for VISP/VISR: 77 (64%) had at least 1 reactive fourth-generation HIV-1 diagnostic test (P < .0001 vs no reactive OraQuick ADVANCE results), and 41 (34%) only had a reactive test by the less specific third-generation Abbott Prism assay. CONCLUSIONS: These data suggest that this widely available patient-controlled test has limited reactivity to HIV-1 antibodies elicited by these candidate HIV-1 vaccines.

18.
Adv Differ Equ ; 2020(1): 190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435267

RESUMO

In many areas, researchers might think that a differential equation model is required, but one might be forced to use an approximate difference equation model if data is only available at discrete points in time. In this paper, a detailed comparison is given of the behavior of continuous and discrete models for two representative time-delay models, namely a model for HIV and an extended logistic growth model. For each model, there are seven different time-delay versions because there are seven different positions to include time delays. For the seven different time-delay versions of each model, proofs are given of necessary and sufficient conditions for the existence and stability of equilibrium points and for the existence of Andronov-Hopf bifurcations in the differential equations and Neimark-Sacker bifurcations in the difference equations. We show that only five of the seven time-delay versions have bifurcations and that all bifurcation versions have supercritical limit cycles with one having a repelling cycle and four having attracting cycles. Numerical simulations are used to illustrate the analytical results and to show that critical times for Neimark-Sacker bifurcations are less than critical times for Andronov-Hopf bifurcations but converge to them as the time step of the discretization tends to zero.

19.
Science ; 370(6519): 950-957, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32972994

RESUMO

Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Motivos de Aminoácidos/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/isolamento & purificação , Células CHO , COVID-19 , Infecções por Coronavirus/terapia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Células HEK293 , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Microscopia Eletrônica , Pneumonia Viral/terapia , Domínios Proteicos/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
20.
J Control Release ; 298: 128-141, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30771412

RESUMO

Hemophilia B (HB) is a life-threatening inherited disease caused by mutations in the FIX gene, leading to reduced protein function and abnormal blood clotting. Due to its monogenic nature, HB is one of the primary targets for gene therapy. Indeed, successful correction of HB has been shown in clinical trials using gene therapy approaches. However, application of these strategies to non-adult patients is limited due to high cell turnover as young patients develop, resulting in vector dilution and subsequent loss of therapeutic expression. Gene editing can potentially overcome this issue by permanently inserting the corrective gene. Integration allows replication of the therapeutic transgene at every cell division and can avoid issues associated with vector dilution. In this study, we explored adenovirus as a platform for corrective CRISPR/Cas9-mediated gene knock-in. We determined as a proof-of-principle that adenoviral delivery of CRISPR/Cas9 is capable of corrective gene addition, leading to long-term augmentation of FIX activity and phenotypic correction in a murine model of juvenile HB. While we found on-target error-free integration in all examined samples, some mice also contained mutations at the integration target site. Additionally, we detected adaptive immune responses against the vector and Cas9 nuclease. Overall, our findings show that the adenovirus platform is suitable for gene insertion in juveniles with inherited disease, suggesting this approach may be applicable to other diseases.


Assuntos
Adenoviridae/genética , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Hemofilia B/terapia , Animais , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Técnicas de Introdução de Genes , Vetores Genéticos , Hemofilia B/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA