Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochemistry ; 62(17): 2530-2540, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37540799

RESUMO

We investigate the physicochemical effects of pyroglutamination on the QHALTSV-NH2 peptide, a segment of cytosolic helix 8 of the human C-X-C chemokine G-protein-coupled receptor type 4 (CXCR4). This modification, resulting from the spontaneous conversion of glutamine to pyroglutamic acid, has significant impacts on the physicochemical features of peptides. Using a static approach, we compared the transformation in different conditions and experimentally found that the rate of product formation increases with temperature, underscoring the need for caution during laboratory experiments to prevent glutamine cyclization. Circular dichroism experiments revealed that the QHALTSV-NH2 segment plays a minor role in the structuration of H8 CXCR4; however, its pyroglutaminated analogue interacts differently with its chemical environment, showing increased susceptibility to solvent variations compared to the native form. The pyroglutaminated analogue exhibits altered behavior when interacting with lipid models, suggesting a significant impact on its interaction with cell membranes. A unique combination of atomic force microscopy and infrared nanospectroscopy revealed that pyroglutamination affects supramolecular self-assembly, leading to highly packed molecular arrangements and a crystalline structure. Moreover, the presence of pyroglumatic acid has been found to favor the formation of amyloidogenic aggregates. Our findings emphasize the importance of considering pyroglutamination in peptide synthesis and proteomics and its potential significance in amyloidosis.


Assuntos
Amiloidose , Glutamina , Humanos , Peptídeos , Quimiocinas/química , Membrana Celular/metabolismo , Dicroísmo Circular , Receptores CXCR4/metabolismo
2.
Langmuir ; 39(6): 2380-2388, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36744422

RESUMO

The systemic delivery of drugs employed by conventional methods has shown to be less effective than a localized delivery system. Many drugs have the effectiveness reduced by fast clearance, increasing the amount required for an efficient treatment. One way to overcome this drawback is through the use of thermoresponsive polymers that undergo a sol-gel transition at physiological temperature, allowing their injection directly in the desired site. In this work, thermosensitive nanocomposites based on poly(N-vinylcaprolactam) and silica particles with 80 and 330 nm were synthesized to be employed as delivery systems for hydrophobic (naringin) and hydrophilic (doxorubicin hydrochloride) drugs. The insertion of SiO2 increased the rheological properties of the nanocomposite at 37 °C, which helps to prevent its diffusion away from the site of injection. The synthesized materials were also able to control the drug release for a period of 7 days under physiological conditions. Due to its higher hydrophobicity and better interaction with the PNVCL matrix, naringin presented a more controlled release. The Korsmeyer-Peppas model indicated different release mechanisms for each drug. At last, a preliminary in vitro study of DOX-loaded nanocomposites cultured with L929 and MB49 cells showed negligible toxic effects on healthy cells and better efficient inhibition of carcinoma cells.


Assuntos
Nanocompostos , Dióxido de Silício , Portadores de Fármacos/toxicidade , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Temperatura , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos/toxicidade , Sistemas de Liberação de Medicamentos
3.
Soft Matter ; 19(26): 4869-4879, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334565

RESUMO

Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.


Assuntos
Bradicinina , COVID-19 , Humanos , Bradicinina/química , Bradicinina/farmacologia , Peptídeos , Transdução de Sinais , Células Endoteliais
4.
Langmuir ; 38(11): 3434-3445, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35274959

RESUMO

Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.


Assuntos
Hidrogéis , Nanoestruturas , Amiloide , Animais , Células HeLa , Humanos , Hidrogéis/química , Camundongos , Morfogênese , Células NIH 3T3 , Nanoestruturas/toxicidade , Peptídeos/química , Água
5.
Am J Bot ; 109(5): 806-820, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35435242

RESUMO

PREMISE: Angiosperms distributed over a large geographical area may display considerable phenotypic variation that can be recognized at morphological and micromorphological levels. Here, we investigate the pollination biology and the presence of floral rewards in Brazilian populations of the widely distributed orchid, Brasiliorchis picta. Based on the new data presented here this study investigates the evolution of floral rewards in Maxillariinae, and tests for the occurrence of convergent evolution of food-hairs in this subtribe. METHODS: Micromorphological and histochemical analyses of the labellar tissues were conducted, together with chemical analysis of fragrance and experiments involving the use of chemical baits. The evolution of floral rewards in Maxillariinae were addressed. RESULTS: Microscopy revealed that B. picta offers food-hairs as a reward. Fragrance is produced by abaxially located labellar epidermal papillae. The main compound present in our samples (2-phenylethanol) also occurs in the aggregation pheromone produced by the mandible glands of pollinators, Meliponini bees. Our analyses indicate a high diversity of flower rewards and pollinators displayed by members of Maxillariinae, and support that edible trichomes evolved independently five times in the subtribe. CONCLUSIONS: The high diversity of floral rewards and pollinators displayed by members of Maxillariinae suggests that different pollinator pressures are involved in the evolution of this neotropical subtribe. In addition, the offering of food-hairs, which are generally infrequently encountered in Orchidaceae, arose by convergent evolution in Maxillariinae.


Assuntos
Orchidaceae , Animais , Abelhas , Flores/anatomia & histologia , Cabelo , Orchidaceae/anatomia & histologia , Polinização , Recompensa
6.
Langmuir ; 37(4): 1531-1541, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481601

RESUMO

Nanocomposite hydrogels have emerged to exhibit multipurpose properties, boosting especially the biomaterial field. However, the development and characterization of these materials can be a challenge, especially stimuli-sensitive materials with dynamic properties in response to external stimuli. By employing UV-vis spectroscopy and NMR relaxation techniques, we could outline the formation and behavior of thermosensitive nanocomposites obtained by in situ polymerization of poly(N-vinylcaprolactam) (PNVCL) and mesoporous silica nanofibers under temperature stimuli. For instance, inorganic nanoparticles covalently linked to PNVCL changed the pattern of temperature-induced phase transition despite showing similar critical temperatures to neat PNVCL. Thermodynamic parameters indicated the formation of an interconnected system of silica and polymer chains with reduced enthalpic contribution and mobility. The investigation of water molecule and polymer segment motions also revealed that the absorption and release of water happened in a wider temperature range for the nanocomposites, and the polymer segments respond in different ways during the phase transition in the presence of silica. This set of techniques was essential to reveal the polymer motions and structural features in nanocomposite hydrogels under temperature stimuli, demonstrating its potential use as experimental guideline to study multicomponent nanocomposites with diverse functionalities and dynamic properties.

7.
Langmuir ; 37(24): 7373-7379, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34101480

RESUMO

The insertion of nanoparticles into smart hydrogels can diversify their functionalities by a synergistic combination of the components properties within the hydrogels. While these hybrid systems are attractive to the biomaterials field, careful design and control of their properties are required since the new interactions between the polymer and the nanoparticles can result in changes or the loss of hydrogels stimuli response. In order to understand the physicochemical aspects of the thermoresponsive systems, nanocomposites of poly(N-vinylcaprolactam) (PNVCL) and silica nanoparticles with different sizes and concentrations were synthesized. The UV-vis and DLS techniques showed that the PNVCL has a sharp phase transition at 34 °C, while the nanocomposites have a diffuse transition. The nanocomposites showed an initial coil-globule transition before the phase transition takes place. This was identified by the evolution of the hydrodynamic diameter of the nanocomposite globules before the cloud point temperature (Tcp), which remained constant for PNVCL. This new transition profile can be described by two stages in which microscopic volume transitions occur first, followed by the macroscopic transition that forms the hydrogel. These results show that the proposed nanocomposites can be designed to have tunable stimuli response to smaller temperature variations with the formation of intermediate globule states.


Assuntos
Nanocompostos , Nanosferas , Hidrogéis , Polímeros , Dióxido de Silício , Temperatura
8.
Phys Chem Chem Phys ; 23(18): 10953-10963, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913458

RESUMO

Four amphiphilic peptides were synthesized, characterized, and evaluated regarding their efficiency in the catalysis of direct aldol reactions in water. The lipopeptides differ by having a double lipid chain and a guanidinium pyrrole group functionalizing one Lys side chain. All the samples are composed of the amino acids l-proline (P), l-arginine (R), or l-lysine (K) functionalized with the cationic guanidiniocarbonyl pyrrole unit (GCP), l-tryptophan (W), and l-glycine (G), covalently linked to one or two long aliphatic chains, leading to surfactant-like designs with controlled proline protonation state and different stereoselectivity. Critical aggregation concentrations (cac) were higher in the presence of the GCP group, suggesting that self-assembly depends on charge distribution along the peptide backbone. Cryogenic Transmission Electron Microscopy (Cryo-TEM) and Small Angle X-ray Scattering (SAXS) showed a rich polymorphism including spherical, cylindrical, and bilayer structures. Molecular dynamics simulations performed to assess the lipopeptide polymorphs revealed an excellent agreement with core-shell arrangements derived from SAXS data and provided an atomistic view of the changes incurred by modifying head groups and lipid chains. The resulting nanostructures behaved as excellent catalysts for aldol condensation reactions, in which superior conversions (>99%), high diastereoselectivities (ds = 94 : 6), and enantioselectivities (ee = 92%) were obtained. Our findings contribute to elucidate the effect of nanoscale organization of lipopeptide assemblies in the catalysis of aldol reactions in an aqueous environment.


Assuntos
Aldeídos/química , Lipopeptídeos/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Conformação Molecular , Simulação de Dinâmica Molecular , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
9.
Langmuir ; 36(48): 14793-14801, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33210929

RESUMO

The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted ß-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Peptídeos , Adsorção , Amiloide , Bicamadas Lipídicas , Peptídeos/toxicidade , Termodinâmica
10.
Soft Matter ; 16(20): 4746-4755, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329496

RESUMO

Penetratin is a short Trojan peptide that attracts great interest in biomedical research for its capacity to translocate biological membranes. Herein, we study in detail both self-assembly and intracellular delivery of DNA by the heptamer KIWFQNR, a truncated peptide derived from Penetratin. This shortened sequence possesses a unique design with bolaamphiphilic characteristics that preserves the longest noncationic amino acid portion found in Penetratin. These features convey amphipathicity to assist self-assembly and make it a suitable model for exploring the role of hydrophobic residues for peptide interaction and cell uptake. We show that the fragment forms peptiplexes (i.e., peptide-DNA complexes), and aggregates into long nanofibers with clear ß-sheet signature. The supramolecular structure of nanofibers is likely composed of DNA cores surrounded by a peptide shell to which the double helix behaves as a template and induces fibrillization. A nucleation and growth mechanism proceeding through liquid-liquid phase separation of coacervates is proposed for describing the self-assembly of peptiplexes. We also demonstrate that peptiplexes deliver double-stranded 200 bp DNA into HeLa cells, indicating its potential for preparing non-viral vectors for oligonucleotides through noncovalent strategies. Since the main structural features of native Penetratin are conserved in this simpler fragment, our findings also highlight the role of uncharged amino acids for structuration, and thus for the ability of Penetratin to cross cell membranes.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , DNA/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Peptídeos Penetradores de Células/química , Citosol/metabolismo , DNA/química , Endocitose , Células HeLa , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química
11.
Malar J ; 18(1): 25, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683104

RESUMO

BACKGROUND: In several Apicomplexa, the formation of moving junctions (MJs) at the interface between the external membranes of the invading parasite and the host cell is essential for the process of parasite invasion. In Plasmodium falciparum and Toxoplasma gondii, the MJ is composed of the Apical Membrane Antigen 1 (AMA1) and Rhoptry Neck Proteins (RONs) complex; specifically, AMA1 interacts with RON2 during host cell invasion. METHODS: Recombinant proteins based on Plasmodium vivax RON2 (A2033-P2100) and its synthetic peptide fragments, one cyclic and one linear, based on PvRON2 (D2035-T2074) were generated and used to evaluate the interaction with P. vivax AMA1 (PvAMA1) by the far western blot, surface plasmon resonance (SPR), and isothermal titration microcalorimetry (ITC) methods. The structural studies of peptides were performed by circular dichroism, and the structural analysis of the complex of PvAMA1 with peptides based on PvRON2 (D2035-T2074) was conducted with small-angle X-ray scattering (SAXS). RESULTS: Surface plasmon resonance (KD = 23.91 ± 2.078 µmol/L) and ITC (K = 3 × 105 mol/L) studies conclusively showed an interaction between the cyclic peptide based on PvRON2 and PvAMA1-His6. In contrast, the linear peptide and recombinant PvRON2 (GST fusion protein) did not show an interaction with PvAMA1. However, the interaction among recombinant proteins PvRON2.2 and PvAMA1-His6 was possible to show by far western blot. CONCLUSIONS: The results show that the PvRON2 structure, particularly the S-S bond between C2051 and C2063, is determinant for the existence of the interaction between PvAMA1 and PvRON2.


Assuntos
Antígenos de Protozoários/imunologia , Proteínas de Membrana/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium vivax/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
12.
J Pept Sci ; 25(6): e3170, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31006946

RESUMO

Glutamic acid-rich peptides are crucial to a variety of biological processes, including glutamatergic neurotransmission and immunological defense. Glutamic acid sequences often exhibit unusual organization into ß2 -type sheets, where bifurcated H bonds formed between glutamic acid side chains and NH in amide bonds on adjacent ß-strands play a paramount role for stabilizing the molecular assembly. Herein, we investigate the self-assembly and supramolecular structure of simplified models consisting of alternating glutamic acid/phenylalanine residues. Small-angle X-ray scattering and atomic force microscopy show that the aggregation pathway is characterized by the formation of small oligomers, followed by coalescence into nanofibrils and nanotapes. Amyloidogenic features are further demonstrated through fiber X-ray diffraction, which reveal molecular packing according to cross-ß patterns, where ß-strands appear perpendicularly oriented to the long axis of nanofibrils and nanotapes. Nanoscale infrared spectroscopy from individual nanoparticles on dried samples shows a remarkable decrease of ß2 -sheet content, accompanied by growth of standard ß-sheet fractions, indicating a ß2 -to-ß1 transition as a consequence of the release of solvent from the interstices of peptide assemblies. Our findings highlight the key role played by water molecules in mediating H-bond formation in ß2 -sheets commonly found in amyloidogenic glutamic acid-rich aggregates.


Assuntos
Amiloide/química , Ácido Glutâmico/química , Nanoestruturas/química , Microscopia de Força Atômica , Modelos Moleculares , Conformação Proteica em Folha beta , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Caries Res ; 53(3): 260-267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30278457

RESUMO

OBJECTIVE: To evaluate the remineralizing potential of a conventional toothpaste (1,100 ppm F) supplemented with nano-sized sodium hexametaphosphate (HMPnano) in artificial caries lesions in situ. DESIGN: This double-blinded crossed study was performed in 4 phases of 3 days each. Twelve subjects used palatal appliances containing 4 bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned into the following treatment groups: no F/HMP/HMPnano (Placebo); 1,100 ppm F (1100F); 1100F plus 0.5% micrometric HMP (1100F/HMP) and 1100F plus 0.5% nano-sized HMP (1100F/HMPnano). Volunteers were instructed to brush their natural teeth with the palatal appliances in the mouth for 1 min (3 times/day), so that blocks were treated with natural slurries of toothpastes. After each phase, surface hardness post-remineralization (SH2), integrated recovery of subsurface hardness (ΔIHR), integrated mineral recovery (ΔIMR) and enamel F concentration were determined. Data were submitted to analysis of variance and Student-Newman-Keuls' test (p < 0.001). RESULTS: Enamel surface became 42% harder when treated with 1100F/HMPnano in comparison with 1100F (p < 0.001). Treatment with 1100F/HMP and 1100F/HMPnano promoted an increase of ∼23 and ∼87%, respectively, in ΔIHR when compared to 1100F (p < 0.001). In addition, ΔIMR for the 1100F/HMPnano was ∼75 and ∼33% higher when compared to 1100F and 1100F/HMP respectively (p < 0.001). Enamel F uptake was similar among all groups except for the placebo (p < 0.001). CONCLUSION: The addition of 0.5% HMPnano to a conventional fluoride toothpaste was able to promote an additional remineralizing effect of artificial caries lesions.


Assuntos
Esmalte Dentário/efeitos dos fármacos , Fluoretos/farmacologia , Fosfatos/farmacologia , Remineralização Dentária , Cremes Dentais , Animais , Cariostáticos , Bovinos , Dureza , Humanos , Nanopartículas
14.
An Acad Bras Cienc ; 90(1): 295-309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641763

RESUMO

Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.


Assuntos
Modelos Estatísticos , Pinus taeda/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto/métodos , Árvores/crescimento & desenvolvimento , Algoritmos , Brasil , Confiabilidade dos Dados , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Agricultura Florestal/métodos
15.
J Clin Monit Comput ; 32(5): 889-895, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29264762

RESUMO

This is a pilot study to assess the clinical safety and efficacy of recording real-time flash visual evoked potentials (VEPs) using the SightSaver TM Visual Stimulator mask during prone spine surgery. A prospective, observational pilot study. Twenty patients presenting for spine surgery (microdiscectomy, 1-2 level lumbar fusion, or > 2 levels thoraco-lumbar fusion) were enrolled. The SightSaver™ Visual Stimulator™ was used to elicit VEPs throughout surgery. Somatosensory evoked potentials (SSEPs) were simultaneously recorded. All patients underwent general anesthesia with a combination of intravenous and inhaled agents. The presence, absence, and changes in VEP were qualitatively analyzed. Reproducible VEPs were elicited in 18/20 patients (36/40 eyes). VEPs were exquisitely sensitive to changes in anesthesia and decayed with rising MAC of isoflurane and/or N2O. Decrements in VEPs were observed without concomitant changes in SSEPs. The mask was simple to apply and use and was not associated with adverse effects. The SightSaver™ mask represents an emerging technology for monitoring developing visual insults during surgery. The definitive applications remain to be determined, but likely include use in select patients and/or surgeries. Here, we have validated the device as safe and effective, and show that VEPs can be recorded in real time under general anesthesia in the prone position. Future studies should be directed towards understanding the ideal anesthetic regimen to facilitate stable VEP recording during prone spine surgery.


Assuntos
Potenciais Evocados Visuais/fisiologia , Monitorização Intraoperatória/métodos , Coluna Vertebral/cirurgia , Adulto , Idoso , Anestesia Geral/efeitos adversos , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Posicionamento do Paciente/efeitos adversos , Estimulação Luminosa , Projetos Piloto , Complicações Pós-Operatórias/prevenção & controle , Decúbito Ventral/fisiologia , Estudos Prospectivos , Fatores de Risco , Transtornos da Visão/prevenção & controle , Adulto Jovem
16.
Allergy ; 72(12): 2017-2025, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28599078

RESUMO

BACKGROUND: Atopic dermatitis (AD) is characterized by robust immune activation. Various T-cell subsets, including Th2/Th22 cells, are increased in lesional and nonlesional skin. However, there is conflicting literature on the diversity of the T-cell receptor (TCR) repertoire in lesional AD, and its relation to nonlesional skin remains unclear. METHODS: We performed high-throughput deep sequencing of the ß-TCR repertoire in 29 lesional and 19 nonlesional AD biopsies, compared to six healthy control and six cutaneous T-cell lymphoma (CTCL) samples from previously published cohorts. RESULTS: While greater T-cell infiltrates were observed in lesional vs nonlesional AD, TCR repertoire diversity was similar in lesional and nonlesional tissues, and absolute numbers of unique T-cell clones correlated with respective T-cell counts. Most (87%) top expanded lesional T-cell clones were shared with nonlesional tissues, and they were largely maintained after 16 weeks of successful treatment with topical triamcinolone. Nevertheless, both lesional and nonlesional AD showed a highly polyclonal TCR pattern, without evidence of oligoclonal expansion, or a preferred usage of certain V-ß genes in AD skin. Size of the overall T-cell infiltrate, but not the level of clonality, correlated with mRNA levels of key inflammatory mediators (e.g., IL-13, CCL17, IL23p19, CXCL10). CONCLUSION: While AD harbors a highly polyclonal T-cell receptor repertoire, and despite the lack of information on TCR antigen specificity, the sharing of top abundant clones between lesional and nonlesional skin, and their persistence after months of therapy, points to the continuous presence of potentially pathogenic skin resident memory T cells well beyond clinically inflamed lesions.


Assuntos
Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Evolução Clonal/genética , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Feminino , Frequência do Gene , Variação Genética , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
17.
Bioconjug Chem ; 27(10): 2337-2345, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27623088

RESUMO

Self-assembly of nanoparticles on living biotemplate surfaces is a promising route to fabricate nano- or microstructured materials with high efficiency and efficacy. We used filamentous fungi to fabricate microtubules of gold nanoparticles through a novel approach that consists of isolating the hyphal growth from the nanoparticle media. This improved methodology resulted in better morphological control and faster adsorption kinetics, which reduced the time needed to form homogeneous microtubules and allowed for control of microtubule thickness through successive additions of nanoparticles. Differences in the adsorption rates due to modifications in the chemical identity of colloidal gold nanoparticles indicated the influence of secondary metabolites and growth media in the fungi metabolism, which demonstrated the need to choose not only the fungus biotemplate but also the correct medium to obtain microtubules with superior properties.


Assuntos
Fungos/citologia , Ouro/química , Nanopartículas Metálicas/química , Microtúbulos , Aspergillus/química , Aspergillus/citologia , Fungos/química , Microscopia Eletrônica de Transmissão e Varredura , Microtúbulos/química , Penicillium/química , Penicillium/citologia , Difração de Raios X , Xylariales/química , Xylariales/citologia
18.
Soft Matter ; 12(45): 9158-9169, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27714346

RESUMO

We describe in depth the structure of complexes formed between DNA and two classes of arginine-containing peptide amphiphiles, namely, the lipopeptide PRW-C16 (P = proline, R = arginine, W = tryptophan, C16 = C16 : 0 alkyl chain) and the bolaamphiphile RFL4FR (R = arginine, F = phenylalanine, L = leucine). A combination of X-ray and neutron scattering provided unprecedented insights into the local structure of these complexes. Lipopeptide-based complexes self-assembled into layered structures with large-scale fractal features, hosting DNA in the interstices. Bola-amphiphile scaffolds were characterized by planar structures with DNA strands presumably sandwiched in-between peptide nanotapes. Importantly, complexation did not affect the structural integrity of DNA in either of the two complexes. The bolaamphiphile conjugates displayed high levels of molecular ordering in contrast to the liquid-crystalline features observed in lipopeptide assemblies. Peptide-DNA complexes were assessed for their potential as a means to deliver the reporter vector pEGFP-N1 into SW480 human colon carcinoma cells. Successfully transfected cells expressed green fluorescent protein. The potentiating effect of PRW-C16 on the cellular uptake of ectopic DNA was found to be much greater than that observed with RFL4FR. In contrast to the bolaamphiphile-based conjugate, the liquid-crystalline nature of the lipopeptide complex is likely to play a key role in DNA release and transfection efficiency since these weakly bound structures require lower energy expenditure during disassembly and load release.


Assuntos
Arginina/química , DNA/química , Vetores Genéticos/química , Peptídeos/química , Transfecção , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde , Humanos
19.
Langmuir ; 31(15): 4513-23, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25823528

RESUMO

A model octapeptide peptide consisting of an alternating sequence of arginine (Arg) and phenylalanine (Phe) residues, namely, [Arg-Phe]4, was prepared, and its self-assembly in solution studied. The simple alternating [Arg-Phe]4 peptide sequence allows for unique insights into the aggregation process and the structure of the self-assembled motifs. Fluorescence and UV-vis assays were used to determine critical aggregation concentrations, corresponding to the formation of oligomeric species and ß-sheet rich structures organized into both spheroidal aggregates and highly ordered fibrils. Electron and atomic force microscopy images show globular aggregates and long unbranched fibers with diameters ranging from ∼4 nm up to ∼40 nm. Infrared and circular dichroism spectroscopy show the formation of ß-sheet structures. X-ray diffraction on oriented stalks show that the peptide fibers have an internal lamellar structure, with an orthorhombic unit cell with parameters a ∼ 27.6 Å, b ∼ 9.7 Å, and c ∼ 9.6 Å. In situ small-angle X-ray scattering (SAXS) shows the presence of low molecular weight oligomers in equilibrium with mature fibers which are likely made up from 5 or 6 intertwined protofilaments. Finally, weak gel solutions are probed under gentle shear, suggesting the ability of these arginine-rich fibers to form networks.


Assuntos
Arginina/química , Oligopeptídeos/química , Fenilalanina/química , Géis , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Agregados Proteicos , Estrutura Secundária de Proteína , Soluções
20.
J Plant Res ; 128(3): 459-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762403

RESUMO

Spiranthinae orchids are known for being self-compatible and offering nectar as a reward. Although data on their pollinators are scarce, members of this tribe are mostly pollinated by bees, hummingbirds and moths. Some of them even reproduce through facultative self-pollination. Nothing is known about the pollinators and reproduction system in Pteroglossa. Based on records on flowering phenology, floral morphology, reward production, pollinators and breeding system, this paper aims to study the reproductive biology of two Pteroglossa spp. Both species offer nectar as a resource and are pollinated exclusively by diurnal Lepidoptera at the studied areas. Nectar is produced by two glandular nectaries, and is stored in a spur. Pollinaria possess a ventrally adhesive viscidium that is deposited on the basal portion of butterfly proboscides. Both species are self-compatible but pollinator-dependent. The reproductive success is low when compared to other Spiranthinae. Although no evident mechanical barrier to avoid self-pollination or geitonogamy was identified, the erratic behavior of the butterflies, with their infrequent visits to only one flower per inflorescence, contributes to an increased fruit set produced through cross-pollination. The presence of ventrally adhesive viscidia in Spiranthinae is responsible for greater pollinator diversity when compared to bee-pollinated Goodyerinae with dorsally adhesive viscidia, adapted to attach to bee mouthparts.


Assuntos
Flores/fisiologia , Orchidaceae/fisiologia , Animais , Cruzamento , Borboletas , Flores/anatomia & histologia , Frutas/anatomia & histologia , Frutas/fisiologia , Orchidaceae/anatomia & histologia , Fenótipo , Polinização , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA