Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell Environ ; 47(6): 2027-2043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38391415

RESUMO

Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.


Assuntos
Chenopodium quinoa , Regulação da Expressão Gênica de Plantas , Meristema , Fotoperíodo , Folhas de Planta , Transcriptoma , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/fisiologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transcriptoma/genética , Flores/genética , Flores/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
2.
Plant Cell Environ ; 44(8): 2565-2579, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33878205

RESUMO

Response to photoperiod is of major importance in crop production. It defines the adaptation of plants to local environments. Quinoa is a short-day plant which had been domesticated in the Andeans regions. We wanted to understand the adaptation to long-day conditions by studying orthologues of two major flowering time regulators of Arabidopsis, FLOWERING LOCUS T (FT) and CONSTANS (CO) in quinoa accessions with contrasting photoperiod response. By searching the quinoa reference genome sequence, we identified 24 FT and six CO homologs. CqFT genes displayed remarkably different expression patterns between long- and short-day conditions, whereas the influence of the photoperiod on CqCOL expressions was moderate. Cultivation of 276 quinoa accessions under short- and long-day conditions revealed great differences in photoperiod sensitivity. After sequencing their genomes, we identified large sequence variations in 12 flowering time genes. We found non-random distribution of haplotypes across accessions from different geographical origins, highlighting the role of CqFT and CqCOL genes in the adaptation to different day-length conditions. We identified five haplotypes causing early flowering under long days. This study provides assets for quinoa breeding because superior haplotypes can be assembled in a predictive breeding approach to produce well-adapted early flowering lines under long-day photoperiods.


Assuntos
Adaptação Biológica/genética , Chenopodium quinoa/fisiologia , Flores/fisiologia , Haplótipos , Proteínas de Plantas/genética , Chenopodium quinoa/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Fotoperíodo , Filogenia
3.
BMC Plant Biol ; 18(1): 380, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594150

RESUMO

BACKGROUND: Increasing the productivity of rapeseed as one of the widely cultivated oil crops in the world is of upmost importance. As flowering time and plant architecture play a key role in the regulation of rapeseed yield, understanding the genetic mechanism underlying these traits can boost the rapeseed breeding. Meristem identity genes are known to have pleiotropic effects on plant architecture and seed yield in various crops. To understand the function of one of the meristem identity genes, APETALA1 (AP1) in rapeseed, we performed phenotypic analysis of TILLING mutants under greenhouse conditions. Three stop codon mutant families carrying a mutation in Bna.AP1.A02 paralog were analyzed for different plant architecture and seed yield-related traits. RESULTS: It was evident that stop codon mutation in the K domain of Bna.AP1.A02 paralog caused significant changes in flower morphology as well as plant architecture related traits like plant height, branch height, and branch number. Furthermore, yield-related traits like seed yield per plant and number of seeds per plants were also significantly altered in the same mutant family. Apart from phenotypic changes, stop codon mutation in K domain of Bna.AP1.A02 paralog also altered the expression of putative downstream target genes like Bna.TFL1 and Bna.FUL in shoot apical meristem (SAM) of rapeseed. Mutant plants carrying stop codon mutations in the COOH domain of Bna.AP1.A02 paralog did not have a significant effect on plant architecture, yield-related traits or the expression of the downstream targets. CONCLUSIONS: We found that Bna.AP1.A02 paralog has pleiotropic effect on plant architecture and yield-related traits in rapeseed. The allele we found in the current study with a beneficial effect on seed yield can be incorporated into rapeseed breeding pool to develop new varieties.


Assuntos
Brassica napus/genética , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Códon/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/fisiologia , Proteínas de Plantas/fisiologia , Característica Quantitativa Herdável , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Alinhamento de Sequência , Homologia de Sequência , Transcriptoma
4.
Plant Cell Environ ; 41(8): 1935-1947, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29813173

RESUMO

Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B. napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.


Assuntos
Brassica napus/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Mapeamento Cromossômico , Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Estações do Ano , Análise de Sequência de RNA , Transcriptoma
5.
Theor Appl Genet ; 131(4): 959-971, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29340752

RESUMO

KEY MESSAGE: This study elucidates the influence of indehiscent mutations on rapeseed silique shatter resistance. A phenotype with enlarged replum-valve joint area and altered cell dimensions in the dehiscence zone is described. Silique shattering is a major factor reducing the yield stability of oilseed rape (Brassica napus). Attempts to improve shatter resistance often include the use of mutations in target genes identified from Arabidopsis (Arabidopsis thaliana). A variety of phenotyping methods assessing the level of shatter resistance were previously described. However, a comparative and comprehensive evaluation of the methods has not yet been undertaken. We verified the increase of shatter resistance in indehiscent double knock-down mutants obtained by TILLING with a systematic approach comparing three independent phenotyping methods. A positive correlation of silique length and shatter resistance was observed and accounted for in the analyses. Microscopic studies ruled out the influence of different lignification patterns. Instead, we propose a model to explain increased shattering resistance of indehiscent rapeseed mutants by altered cell shapes and sizes within the contact surfaces of replum and valves.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Brassica napus/genética , Proteínas de Plantas/fisiologia , Mutação Puntual , Sementes/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Brassica napus/crescimento & desenvolvimento , Técnicas de Silenciamento de Genes , Fenótipo , Proteínas de Plantas/genética , Sementes/genética , Estresse Mecânico
6.
Theor Appl Genet ; 130(8): 1649-1667, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28478574

RESUMO

KEY MESSAGE: Only few genetic loci are sufficient to increase the variation of bolting time in Beta vulgaris dramatically, regarding vernalization requirement, seasonal bolting time and reproduction type. Beta species show a wide variation of bolting time regarding the year of first reproduction, seasonal bolting time and the number of reproduction cycles. To elucidate the genetics of bolting time control, we used three F3 mapping populations that were produced by crossing a semelparous, annual sugar beet with iteroparous, vernalization-requiring wild beet genotypes. The semelparous plants died after reproduction, whereas iteroparous plants reproduced at least twice. All populations segregated for vernalization requirement, seasonal bolting time and the number of reproduction cycles. We found that vernalization requirement co-segregated with the bolting locus B on chromosome 2 and was inherited independently from semel- or iteroparous reproduction. Furthermore, we found that seasonal bolting time is a highly heritable trait (h 2 > 0.84), which is primarily controlled by two major QTL located on chromosome 4 and 9. Late bolting alleles of both loci act in a partially recessive manner and were identified in both iteroparous pollinators. We observed an additive interaction of both loci for bolting delay. The QTL region on chromosome 4 encompasses the floral promoter gene BvFT2, whereas the QTL on chromosome 9 co-localizes with the BR 1 locus, which controls post-winter bolting resistance. Our findings are applicable for marker-assisted sugar beet breeding regarding early bolting to accelerate generation cycles and late bolting to develop bolting-resistant spring and winter beets. Unexpectedly, one population segregated also for dwarf growth that was found to be controlled by a single locus on chromosome 9.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/genética , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Fenótipo , Melhoramento Vegetal , Reprodução , Estações do Ano
7.
Front Plant Sci ; 13: 916067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812962

RESUMO

Quinoa is a pseudocereal originating from the Andean regions. Despite quinoa's long cultivation history, genetic analysis of this crop is still in its infancy. We aimed to localize quantitative trait loci (QTL) contributing to the phenotypic variation of agronomically important traits. We crossed the Chilean accession PI-614889 and the Peruvian accession CHEN-109, which depicted significant differences in days to flowering, days to maturity, plant height, panicle length, and thousand kernel weight (TKW), saponin content, and mildew susceptibility. We observed sizeable phenotypic variation across F2 plants and F3 families grown in the greenhouse and the field, respectively. We used Skim-seq to genotype the F2 population and constructed a high-density genetic map with 133,923 single nucleotide polymorphism (SNPs). Fifteen QTL were found for ten traits. Two significant QTL, common in F2 and F3 generations, depicted pleiotropy for days to flowering, plant height, and TKW. The pleiotropic QTL harbored several putative candidate genes involved in photoperiod response and flowering time regulation. This study presents the first high-density genetic map of quinoa that incorporates QTL for several important agronomical traits. The pleiotropic loci can facilitate marker-assisted selection in quinoa breeding programs.

8.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801689

RESUMO

Quinoa germplasm preserves useful and substantial genetic variation, yet it remains untapped due to a lack of implementation of modern breeding tools. We have integrated field and sequence data to characterize a large diversity panel of quinoa. Whole-genome sequencing of 310 accessions revealed 2.9 million polymorphic high confidence single nucleotide polymorphism (SNP) loci. Highland and Lowland quinoa were clustered into two main groups, with FST divergence of 0.36 and linkage disequilibrium (LD) decay of 6.5 and 49.8 kb, respectively. A genome-wide association study using multi-year phenotyping trials uncovered 600 SNPs stably associated with 17 traits. Two candidate genes are associated with thousand seed weight, and a resistance gene analog is associated with downy mildew resistance. We also identified pleiotropically acting loci for four agronomic traits important for adaptation. This work demonstrates the use of re-sequencing data of an orphan crop, which is partially domesticated to rapidly identify marker-trait association and provides the underpinning elements for genomics-enabled quinoa breeding.


As human populations grow and climate change tightens its grip, developing nutritious crops which can thrive on poor soil and under difficult conditions will become a priority. Quinoa, a harvest currently overlooked by agricultural research, could be an interesting candidate in this effort. With its high nutritional value and its ability to tolerate drought, frost and high concentrations of salt in the soil, this hardy crop has been cultivated in the Andes for the last 5,000 to 7,000 years. Today its commercial production is mainly limited to Peru, Bolivia, and Ecuador. Pinpointing the genetic regions that control traits such as yields or flowering time would help agronomists to create new varieties better suited to life under northern latitudes and mechanical farming. To identify these genes, Patiranage et al. grew 310 varieties of quinoa from all over the world under the same conditions; the genomes of these plants were also examined in great detail. Analyses were then performed to link specific genetic variations with traits relevant to agriculture, helping to pinpoint changes in the genetic code linked to differences in how the plants grew, resisted disease, or produced seeds of varying quality. Candidate genes likely to control these traits were then put forward. The study by Patiranage et al. provides a genetic map where genes of agronomical importance have been precisely located and their effects measured. This resource will help to select genetic profiles which could be used to create new quinoa breeds better adapted to a changing world.


Assuntos
Chenopodium quinoa , Estudo de Associação Genômica Ampla , Chenopodium quinoa/genética , Produtos Agrícolas/genética , Genoma de Planta , Desequilíbrio de Ligação , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
9.
PLoS One ; 16(3): e0233821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705394

RESUMO

Quinoa depicts high nutritional quality and abiotic stress resistance, attracting strong interest in the last years. To unravel the function of candidate genes for agronomically relevant traits, studying their transcriptional activities by RT-qPCR is an important experimental approach. The accuracy of such experiments strongly depends on precise data normalization. To date, validation of potential candidate genes for normalization of diurnal expression studies has not been performed in C. quinoa. We selected eight candidate genes based on transcriptome data and literature survey, including conventionally used reference genes. We used three statistical algorithms (BestKeeper, geNorm and NormFinder) to test their stability and added further validation by a simulation-based strategy. We demonstrated that using different reference genes, including those top ranked by stability, causes significant differences among the resulting diurnal expression patterns. Our results show that isocitrate dehydrogenase enzyme (IDH-A) and polypyrimidine tract-binding protein (PTB) are suitable genes to normalize diurnal expression data of two different quinoa accessions. Moreover, we validated our reference genes by normalizing two known diurnally regulated genes, BTC1 and BBX19. The validated reference genes obtained in this study will improve the accuracy of RT-qPCR data normalization and facilitate gene expression studies in quinoa.


Assuntos
Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Algoritmos , Chenopodium quinoa/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteínas de Plantas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
10.
Plants (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34579292

RESUMO

Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.

11.
Front Plant Sci ; 7: 1662, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895650

RESUMO

Sugar beet (Beta vulgaris ssp. vulgaris) is a biennial, sucrose-storing plant, which is mainly cultivated as a spring crop and harvested in the vegetative stage before winter. For increasing beet yield, over-winter cultivation would be advantageous. However, bolting is induced after winter and drastically reduces yield. Thus, post-winter bolting control is essential for winter beet cultivation. To identify genetic factors controlling bolting after winter, a F2 population was previously developed by crossing the sugar beet accessions BETA 1773 with reduced bolting tendency and 93161P with complete bolting after winter. For a mapping-by-sequencing analysis, pools of 26 bolting-resistant and 297 bolting F2 plants were used. Thereby, a single continuous homozygous region of 103 kb was co-localized to the previously published BR1 QTL for post-winter bolting resistance (Pfeiffer et al., 2014). The BR1 locus was narrowed down to 11 candidate genes from which a homolog of the Arabidopsis CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 73-I (CPSF73-I) was identified as the most promising candidate. A 2 bp deletion within the BETA 1773 allele of BvCPSF73-Ia results in a truncated protein. However, the null allele of BvCPSF73-Ia might partially be compensated by a second BvCPSF73-Ib gene. This gene is located 954 bp upstream of BvCPSF73-Ia and could be responsible for the incomplete penetrance of the post-winter bolting resistance allele of BETA 1773. This result is an important milestone for breeding winter beets with complete bolting resistance after winter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA