Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175192

RESUMO

Benzoic acid, a partial uncoupler of the proton motive force (PMF), selects for sensitivity to chloramphenicol and tetracycline during the experimental evolution of Escherichia coli K-12. Transcriptomes of E. coli isolates evolved with benzoate showed the reversal of benzoate-dependent regulation, including the downregulation of multidrug efflux pump genes, the gene for the Gad acid resistance regulon, the nitrate reductase genes narHJ, and the gene for the acid-consuming hydrogenase Hyd-3. However, the benzoate-evolved strains had increased expression of OmpF and other large-hole porins that admit fermentable substrates and antibiotics. Candidate genes identified from benzoate-evolved strains were tested for their roles in benzoate tolerance and in chloramphenicol sensitivity. Benzoate or salicylate tolerance was increased by deletion of the Gad activator ariR or of the acid fitness island from slp to the end of the gadX gene encoding Gad regulators and the multidrug pump genes mdtEF Benzoate tolerance was also increased by deletion of multidrug component gene emrA, RpoS posttranscriptional regulator gene cspC, adenosine deaminase gene add, hydrogenase gene hyc (Hyd-3), and the RNA chaperone/DNA-binding regulator gene hfq Chloramphenicol resistance was decreased by mutations in genes for global regulators, such as RNA polymerase alpha subunit gene rpoA, the Mar activator gene rob, and hfq Deletion of lipopolysaccharide biosynthetic kinase gene rfaY decreased the rate of growth in chloramphenicol. Isolates from experimental evolution with benzoate had many mutations affecting aromatic biosynthesis and catabolism, such as aroF (encoding tyrosine biosynthesis) and apt (encoding adenine phosphoribosyltransferase). Overall, benzoate or salicylate exposure selects for the loss of multidrug efflux pumps and of hydrogenases that generate a futile cycle of PMF and upregulates porins that admit fermentable nutrients and antibiotics.IMPORTANCE Benzoic acid is a common food preservative, and salicylic acid (2-hydroxybenzoic acid) is the active form of aspirin. At high concentrations, benzoic acid conducts a proton across the membrane, depleting the proton motive force. In the absence of antibiotics, benzoate exposure selects against proton-driven multidrug efflux pumps and upregulates porins that admit fermentable substrates but that also allow the entry of antibiotics. Thus, evolution with benzoate and related molecules, such as salicylates, requires a trade-off for antibiotic sensitivity, a trade-off that could help define a stable gut microbiome. Benzoate and salicylate are naturally occurring plant signal molecules that may modulate the microbiomes of plants and animal digestive tracts so as to favor fermenters and exclude drug-resistant pathogens.


Assuntos
Benzoatos/metabolismo , Ácido Benzoico/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ácido Salicílico/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Benzoatos/farmacologia , Ácido Benzoico/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Porinas/genética , Porinas/metabolismo , Ácido Salicílico/farmacologia
2.
Geroscience ; 46(3): 3197-3218, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38227136

RESUMO

Metformin has attracted increasing interest for its potential benefits in extending healthspan and longevity. This study examined the effects of early-life metformin treatment on the development and metabolism of C57BL/6 J (B6) mice, with metformin administered to juvenile mice from 15 to 56 days of age. Metformin treatment led to decreased body weight in both sexes (P < 0.05, t-test). At 9 weeks of age, mice were euthanized and organ weights were recorded. The relative weight of retroperitoneal fat was decreased in females, while relative weights of perigonadal and retroperitoneal fat were decreased, and relative liver weight was increased in males (P < 0.05, t-test). Glucose and insulin tolerance tests (GTT and ITT) were conducted at the age of 7 weeks. ANOVA revealed a significant impairment in insulin sensitivity by the treatment, and a significantly interactive effect on glucose tolerance between sex and treatment, underscoring a disparity in GTT between sexes in response to the treatment. Metformin treatment reduced circulating insulin levels in fasting and non-fasting conditions for male mice, with no significant alterations observed in female mice. qRT-PCR analysis of glucose metabolism-related genes (Akt2, Glut2, Glut4, Irs1, Nrip1, Pi3k, Pi3kca, Pkca) in the liver and skeletal muscle reveals metformin-induced sex- and organ-specific effects on gene expression. Comparison with previous studies in heterogeneous UM-HET3 mice receiving the same treatment suggests that genetic differences may contribute to variability in the effects of metformin treatment on development and metabolism. These findings indicate that early-life metformin treatment affects development and metabolism in both sex- and genetics-dependent manners.


Assuntos
Metformina , Masculino , Animais , Feminino , Camundongos , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Envelhecimento , Insulina , Glucose/metabolismo , Glucose/farmacologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA