Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(19): 3461-3463, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113424

RESUMO

In this issue of Cell, Kreutzberger and colleagues report the near-atomic-resolution, cryo-EM structures of the supercoiled filaments of both bacterial and archaeal motility machines. Despite the lack of homology, the supercoiled filament structures reveal shared fundamental features of prokaryotic locomotion and represent a prime example of convergent evolution.


Assuntos
Archaea , Citoesqueleto , Bactérias , Microscopia Crioeletrônica
2.
Cell ; 183(1): 244-257.e16, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931735

RESUMO

Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.


Assuntos
Proteínas de Bactérias/ultraestrutura , Flagelos/ultraestrutura , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica/métodos , Flagelos/metabolismo , Conformação Proteica , Torque
3.
Trends Biochem Sci ; 47(2): 160-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34294545

RESUMO

The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.


Assuntos
Proteínas de Bactérias , Flagelos , Bactérias/metabolismo , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Torque
4.
Proc Natl Acad Sci U S A ; 120(47): e2310842120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963249

RESUMO

Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.


Assuntos
Escherichia coli , Genes Bacterianos , Escherichia coli/genética , Plasmídeos/genética , Fímbrias Bacterianas/genética , DNA Bacteriano/genética , Conjugação Genética , DNA , Transferência Genética Horizontal
5.
PLoS Pathog ; 19(6): e1011451, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315106

RESUMO

Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.


Assuntos
Salmonella typhimurium , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Virulência/genética , Ilhas Genômicas/genética , Força Próton-Motriz , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica
6.
Mol Microbiol ; 117(3): 705-713, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961989

RESUMO

The widespread bacterial second messenger bis-(3'-5')-cyclic diguanosine monophosphate (c-di-GMP) is an important regulator of biofilm formation, virulence and cell differentiation. C-di-GMP-specific biosensors that allow detection and visualization of c-di-GMP levels in living cells are key to our understanding of how c-di-GMP fluctuations drive cellular responses. Here, we describe a novel c-di-GMP biosensor, CensYBL, that is based on c-di-GMP-induced dimerization of the effector protein BldD from Streptomyces resulting in bimolecular fluorescence complementation of split-YPet fusion proteins. As a proof-of-principle, we demonstrate that CensYBL is functional in detecting fluctuations in intracellular c-di-GMP levels in the Gram-negative model bacteria Escherichia coli and Salmonella enterica serovar Typhimurium. Using deletion mutants of c-di-GMP diguanylate cyclases and phosphodiesterases, we show that c-di-GMP dependent dimerization of CBldD-YPet results in fluorescence complementation reflecting intracellular c-di-GMP levels. Overall, we demonstrate that the CensYBL biosensor is a user-friendly and versatile tool that allows to investigate c-di-GMP variations using single-cell and population-wide experimental set-ups.


Assuntos
GMP Cíclico , Sistemas do Segundo Mensageiro , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Escherichia coli/metabolismo , Fluorescência , Salmonella typhimurium/metabolismo
7.
Mol Microbiol ; 116(4): 1189-1200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34467587

RESUMO

The assembly of the bacterial flagellum is orchestrated by the secretion of distinct early and late secretion substrates via the flagellar-specific type-III secretion system (fT3SS). However, how the fT3SS is able to distinguish between the different (early and late) substrate classes during flagellar assembly remains poorly understood. In this study, we investigated the substrate selectivity and specificity of the fT3SS of Salmonella enterica at different assembly stages. For this, we developed an experimental setup that allowed us to synchronize hook-basal-body assembly and to monitor early and late substrate secretion of fT3SSs operating in either early or late secretion mode, respectively. Our results demonstrate that the fT3SS features a remarkable specificity for only the substrates required at the respective assembly stage. No crosstalk of substrates was observed for fT3SSs operating in the opposing secretion mode. We further found that a substantial fraction of fT3SS surprisingly remained in early secretion mode. Our results thus suggest that the secretion substrate specificity switch of the fT3SS is unidirectional and irreversible. The developed secretion substrate reporter system further provides a platform for future investigations of the underlying molecular mechanisms of the elusive substrate recognition of the T3SS.


Assuntos
Proteínas de Bactérias/metabolismo , Corpos Basais/metabolismo , Flagelos/metabolismo , Salmonella enterica/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Membrana/metabolismo , Especificidade por Substrato
8.
Microbiology (Reading) ; 168(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36165741

RESUMO

Transmembrane potential is one of the main bioenergetic parameters of bacterial cells, and is directly involved in energizing key cellular processes such as transport, ATP synthesis and motility. The most common approach to measure membrane potential levels is through use of voltage-sensitive fluorescent dyes. Such dyes either accumulate or are excluded from the cell in a voltage-dependent manner, which can be followed by means of fluorescence microscopy, flow cytometry, or fluorometry. Since the cell's ability to maintain transmembrane potential relies upon low and selective membrane ion conductivity, voltage-sensitive dyes are also highly sensitive reporters for the activity of membrane-targeting antibacterials. However, the presence of an additional membrane layer in Gram-negative (diderm) bacteria complicates their use significantly. In this paper, we provide guidance on how membrane potential and its changes can be monitored reliably in Gram-negatives using the voltage-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide [DiSC3(5)]. We also discuss the confounding effects caused by the presence of the outer membrane, or by measurements performed in buffers rather than growth medium. We hope that the discussed methods and protocols provide an easily accessible basis for the use of voltage-sensitive dyes in Gram-negative organisms, and raise awareness of potential experimental pitfalls associated with their use.


Assuntos
Corantes Fluorescentes , Iodetos , Trifosfato de Adenosina/metabolismo , Corantes Fluorescentes/metabolismo , Bactérias Gram-Negativas/metabolismo , Iodetos/metabolismo , Potenciais da Membrana
9.
Mol Microbiol ; 113(4): 755-765, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31828860

RESUMO

The bacterial flagellar motor accommodates ten stator units around the rotor to produce large torque at high load. But when external load is low, some previous studies showed that a single stator unit can spin the rotor at the maximum speed, suggesting that the maximum speed does not depend on the number of active stator units, whereas others reported that the speed is also dependent on the stator number. To clarify these two controversial observations, much more precise measurements of motor rotation would be required at external load as close to zero as possible. Here, we constructed a Salmonella filament-less mutant that produces a rigid, straight, twice longer hook to efficiently label a 60 nm gold particle and analyzed flagellar motor dynamics at low load close to zero. The maximum motor speed was about 400 Hz. Large speed fluctuations and long pausing events were frequently observed, and they were suppressed by either over-expression of the MotAB stator complex or increase in the external load, suggesting that the number of active stator units in the motor largely fluctuates near zero load. We conclude that the lifetime of the active stator unit becomes much shorter when the motor operates near zero load.


Assuntos
Flagelos/fisiologia , Proteínas Motores Moleculares/metabolismo , Salmonella/fisiologia , Proteínas de Bactérias/metabolismo , Rotação , Torque
10.
Curr Top Microbiol Immunol ; 427: 143-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31218506

RESUMO

The remarkably complex architecture and organization of bacterial nanomachines originally raised the enigma to how they are assembled in a coordinated manner. Over the years, the assembly processes of the flagellum and evolutionary-related injectisome complexes have been deciphered and were shown to rely on a conserved protein secretion machine: the type-III secretion system. In this book chapter, we demonstrate how individually evolved mechanisms cooperate in highly versatile and robust secretion machinery to export and assemble the building blocks of those nanomachines.


Assuntos
Metabolismo Energético , Sistemas de Secreção Tipo III/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias , Flagelos , Transporte Proteico
11.
PLoS Biol ; 16(9): e2006989, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188886

RESUMO

Most bacteria swim in liquid environments by rotating one or several flagella. The long external filament of the flagellum is connected to a membrane-embedded basal body by a flexible universal joint, the hook, which allows the transmission of motor torque to the filament. The length of the hook is controlled on a nanometer scale by a sophisticated molecular ruler mechanism. However, why its length is stringently controlled has remained elusive. We engineered and studied a diverse set of hook-length variants of Salmonella enterica. Measurements of plate-assay motility, single-cell swimming speed, and directional persistence in quasi-2D and population-averaged swimming speed and body angular velocity in 3D revealed that the motility performance is optimal around the wild-type hook length. We conclude that too-short hooks may be too stiff to function as a junction and too-long hooks may buckle and create instability in the flagellar bundle. Accordingly, peritrichously flagellated bacteria move most efficiently as the distance travelled per body rotation is maximal and body wobbling is minimized. Thus, our results suggest that the molecular ruler mechanism evolved to control flagellar hook growth to the optimal length consistent with efficient bundle formation. The hook-length control mechanism is therefore a prime example of how bacteria evolved elegant but robust mechanisms to maximize their fitness under specific environmental constraints.


Assuntos
Flagelos/metabolismo , Salmonella enterica/metabolismo , Proteínas de Bactérias/metabolismo , Movimento , Mutação/genética , Análise de Célula Única
12.
Int J Cancer ; 147(2): 448-460, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31755108

RESUMO

Genetically engineered Salmonella Typhimurium are potent vectors for prophylactic and therapeutic measures against pathogens as well as cancer. This is based on the potent adjuvanticity that supports strong immune responses. The physiology of Salmonella is well understood. It simplifies engineering of both enhanced immune-stimulatory properties as well as safety features, thus, resulting in an appropriate balance between attenuation and efficacy for clinical applications. A major virulence factor of Salmonella is the flagellum. It is also a strong pathogen-associated molecular pattern recognized by extracellular and intracellular receptors of immune cells of the host. At the same time, it represents a serious metabolic burden. Accordingly, the bacteria evolved tight regulatory mechanisms that control flagella synthesis in vivo. Here, we systematically investigated the immunogenicity and adjuvant properties of various flagella mutants of Salmonella in vitro and in a mouse cancer model in vivo. We found that mutants lacking the flagellum-specific ATPase FliHIJ or the inner membrane ring FliF displayed the greatest stimulatory capacity and strongest antitumor effects, while remaining safe in vivo. Scanning electron microscopy revealed the presence of outer membrane vesicles in the ΔfliF and ΔfliHIJ mutants. Finally, the combination of the ΔfliF and ΔfliHIJ mutations with our previously described attenuated and immunogenic background strain SF102 displayed strong efficacy against the highly resistant cancer cell line RenCa. We thus conclude that manipulating flagella biosynthesis has great potential for the construction of highly efficacious and versatile Salmonella vector strains.


Assuntos
Neoplasias do Colo/terapia , Flagelos/imunologia , Mutação , Salmonella typhimurium/imunologia , Administração Intravenosa , Animais , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Flagelos/genética , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Varredura , ATPases Translocadoras de Prótons/genética , Células RAW 264.7 , Salmonella typhimurium/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS Biol ; 15(8): e2002267, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771474

RESUMO

Many bacteria move using a complex, self-assembling nanomachine, the bacterial flagellum. Biosynthesis of the flagellum depends on a flagellar-specific type III secretion system (T3SS), a protein export machine homologous to the export machinery of the virulence-associated injectisome. Six cytoplasmic (FliH/I/J/G/M/N) and seven integral-membrane proteins (FlhA/B FliF/O/P/Q/R) form the flagellar basal body and are involved in the transport of flagellar building blocks across the inner membrane in a proton motive force-dependent manner. However, how the large, multi-component transmembrane export gate complex assembles in a coordinated manner remains enigmatic. Specific for most flagellar T3SSs is the presence of FliO, a small bitopic membrane protein with a large cytoplasmic domain. The function of FliO is unknown, but homologs of FliO are found in >80% of all flagellated bacteria. Here, we demonstrate that FliO protects FliP from proteolytic degradation and promotes the formation of a stable FliP-FliR complex required for the assembly of a functional core export apparatus. We further reveal the subcellular localization of FliO by super-resolution microscopy and show that FliO is not part of the assembled flagellar basal body. In summary, our results suggest that FliO functions as a novel, flagellar T3SS-specific chaperone, which facilitates quality control and productive assembly of the core T3SS export machinery.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Filogenia
14.
Mol Microbiol ; 107(1): 94-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076571

RESUMO

During assembly of the bacterial flagellum, protein subunits that form the exterior structures are exported through a specialized secretion apparatus energized by the proton gradient. This category of protein transport, together with the similar process that occurs in the injectisomes of gram-negative pathogens, is termed type-III secretion. The membrane-embedded part of the flagellar export apparatus contains five essential proteins: FlhA, FlhB, FliP, FliQ and FliR. Here, we have undertaken a variety of experiments that together support the proposal that the protein-conducting conduit is formed primarily, and possibly entirely, by FliP. Chemical modification experiments demonstrate that positions near the center of certain FliP trans-membrane (TM) segments are accessible to polar reagents. FliP expression sensitizes cells to a number of chemical agents, and mutations at predicted channel-facing positions modulate this effect. Multiple assays are used to show that FliP suffices to form a channel that can conduct a variety of medium-sized, polar molecules. Conductance properties are strongly modulated by mutations in a methionine-rich loop that is predicted to lie at the inner mouth of the channel, which might form a gasket around cargo molecules undergoing export. The results are discussed in the framework of an hypothesis for the architecture and action of the cargo-conducting part of the type-III secretion apparatus.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Transporte Proteico/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo
15.
Mol Microbiol ; 104(2): 234-249, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28106310

RESUMO

The bacterial flagellum contains a specialized secretion apparatus in its base that pumps certain protein subunits through the growing structure to their sites of installation beyond the membrane. A related apparatus functions in the injectisomes of gram-negative pathogens to export virulence factors into host cells. This mode of protein export is termed type-III secretion (T3S). Details of the T3S mechanism are unclear. It is energized by the proton gradient; here, a mutational approach was used to identify proton-binding groups that might function in transport. Conserved proton-binding residues in all the membrane components were tested. The results identify residues R147, R154 and D158 of FlhA as most critical. These lie in a small, well-conserved cytoplasmic domain of FlhA, located between transmembrane segments 4 and 5. Two-hybrid experiments demonstrate self-interaction of the domain, and targeted cross-linking indicates that it forms a multimeric array. A mutation that mimics protonation of the key acidic residue (D158N) was shown to trigger a global conformational change that affects the other, larger cytoplasmic domain that interacts with the export cargo. The results are discussed in the framework of a transport model based on proton-actuated movements in the cytoplasmic domains of FlhA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sequência de Aminoácidos , Flagelos/metabolismo , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Relação Estrutura-Atividade , Sistemas de Secreção Tipo III/fisiologia
16.
Cell Microbiol ; 19(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28295924

RESUMO

The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near-surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC-flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC-expressing bacteria outcompeted FljB-expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.


Assuntos
Células Epiteliais/microbiologia , Flagelina/metabolismo , Trato Gastrointestinal/microbiologia , Salmonella/fisiologia , Animais , Locomoção , Camundongos , Salmonelose Animal/microbiologia
17.
Mol Microbiol ; 101(5): 841-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27206164

RESUMO

The bacterial flagellum enables directed movement of Salmonella enterica towards favorable conditions in liquid environments. Regulation of flagellar synthesis is tightly controlled by various environmental signals at transcriptional and post-transcriptional levels. The flagellar master regulator FlhD4 C2 resides on top of the flagellar transcriptional hierarchy and is under autogenous control by FlhD4 C2 -dependent activation of the repressor rflM. The inhibitory activity of RflM depends on the presence of RcsB, the response regulator of the RcsCDB phosphorelay system. In this study, we elucidated the molecular mechanism of RflM-dependent repression of flhDC. We show that RcsB and RflM form a heterodimer that coordinately represses flhDC transcription independent of RcsB phosphorylation. RcsB-RflM complex binds to a RcsB box downstream the P1 transcriptional start site of the flhDC promoter with increased affinity compared to RcsB in the absence of RflM. We propose that RflM stabilizes binding of unphosphorylated RcsB to the flhDC promoter in absence of environmental cues. Thus, RflM is a novel auxiliary regulatory protein that mediates target specificity of RcsB for flhDC repression. The cooperative action of the RcsB-RflM repressor complex allows Salmonella to fine-tune initiation of flagellar gene expression and adds another level to the complex regulation of flagellar synthesis.


Assuntos
Flagelos/genética , Flagelos/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óperon , Fosforilação , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
Curr Top Microbiol Immunol ; 398: 185-205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27000091

RESUMO

Infections by motile, pathogenic bacteria, such as Campylobacter species, Clostridium species, Escherichia coli, Helicobacter pylori, Listeria monocytogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Salmonella species, Vibrio cholerae, and Yersinia species, represent a severe economic and health problem worldwide. Of special importance in this context is the increasing emergence and spread of multidrug-resistant bacteria. Due to the shortage of effective antibiotics for the treatment of infections caused by multidrug-resistant, pathogenic bacteria, the targeting of novel, virulence-relevant factors constitutes a promising, alternative approach. Bacteria have evolved distinct motility structures for movement across surfaces and in aqueous environments. In this review, I will focus on the bacterial flagellum, the associated chemosensory system, and the type-IV pilus as motility devices, which are crucial for bacterial pathogens to reach a preferred site of infection, facilitate biofilm formation, and adhere to surfaces or host cells. Thus, those nanomachines constitute potential targets for the development of novel anti-infectives that are urgently needed at a time of spreading antibiotic resistance. Both bacterial flagella and type-IV pili (T4P) are intricate macromolecular complexes made of dozens of different proteins and their motility function relies on the correct spatial and temporal assembly of various substructures. Specific type-III and type-IV secretion systems power the export of substrate proteins of the bacterial flagellum and type-IV pilus, respectively, and are homologous to virulence-associated type-III and type-II secretion systems. Accordingly, bacterial flagella and T4P represent attractive targets for novel antivirulence drugs interfering with synthesis, assembly, and function of these motility structures.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Quimiotaxia/efeitos dos fármacos , Animais , Bactérias/citologia , Bactérias/genética , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Virulência/efeitos dos fármacos
19.
PLoS Genet ; 10(11): e1004800, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393010

RESUMO

Type-III protein secretion systems are utilized by gram-negative pathogens to secrete building blocks of the bacterial flagellum, virulence effectors from the cytoplasm into host cells, and structural subunits of the needle complex. The flagellar type-III secretion apparatus utilizes both the energy of the proton motive force and ATP hydrolysis to energize substrate unfolding and translocation. We report formation of functional flagella in the absence of type-III ATPase activity by mutations that increased the proton motive force and flagellar substrate levels. We additionally show that increased proton motive force bypassed the requirement of the Salmonella pathogenicity island 1 virulence-associated type-III ATPase for secretion. Our data support a role for type-III ATPases in enhancing secretion efficiency under limited secretion substrate concentrations and reveal the dispensability of ATPase activity in the type-III protein export process.


Assuntos
Adenosina Trifosfatases/genética , Flagelos/genética , Salmonella enterica/genética , Fatores de Virulência/genética , Adenosina Trifosfatases/metabolismo , Ilhas Genômicas/genética , Mutação , Força Próton-Motriz , Salmonella enterica/patogenicidade
20.
Mol Microbiol ; 93(3): 505-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24946091

RESUMO

A remarkable feature of the flagellar-specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook-basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N-terminal secretion signal, mRNA secretion signals within the 5'-untranslated region (5'-UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational ß-lactamase fusions to probe the secretion efficacy of the N-terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early-type substrates FlgD, FlgF, FlgE and the late-type substrate FlgL were analysed in detail. Analysing the role of the 5'-UTR in secretion of flgB and flgE revealed that the native 5'-UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate-specific chaperones allowing for targeted secretion of flagellar substrates.


Assuntos
Arabinose/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Flagelos/metabolismo , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA