Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Rev Lett ; 109(20): 205502, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215505

RESUMO

Theoretical research on the two-dimensional crystal structure of hexagonal boron nitride (h-BN) has suggested that the physical properties of h-BN can be tailored for a wealth of applications by controlling the atomic structure of the membrane edges. Unexplored for h-BN, however, is the possibility that small additional edge-atom distortions could have electronic structure implications critically important to nanoengineering efforts. Here we demonstrate, using a combination of analytical scanning transmission electron microscopy and density functional theory, that covalent interlayer bonds form spontaneously at the edges of a h-BN bilayer, resulting in subangstrom distortions of the edge atomic structure. Orbital maps calculated in 3D around the closed edge reveal that the out-of-plane bonds retain a strong π(*) character. We show that this closed edge reconstruction, strikingly different from the equivalent case for graphene, helps the material recover its bulklike insulating behavior and thus largely negates the predicted metallic character of open edges.

2.
Nano Lett ; 11(8): 3221-6, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21608991

RESUMO

Boron nitride nanoribbons (BNNRs), the boron nitride structural equivalent of graphene nanoribbons (GNRs), are predicted to possess unique electronic and magnetic properties. We report the synthesis of BNNRs through the potassium-intercalation-induced longitudinal splitting of boron nitride nanotubes (BNNTs). This facile, scalable synthesis results in narrow (down to 20 nm), few sheet (typically 2-10), high crystallinity BNNRs with very uniform widths. The BNNRs are at least 1 µm in length with minimal defects within the ribbon plane and along the ribbon edges.

4.
J Am Chem Soc ; 127(40): 13800-1, 2005 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-16201795

RESUMO

Au nanoparticles encapsulated within polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles assemble into regular, one-dimensional arrays when they are exposed to solvent conditions that relax interfacial curvature in the micellar shell. Nanoparticle chaining was induced by adding salt, acid, or cationic carbodiimide to the suspension of purified encapsulated Au nanoparticles (Au@PS-b-PAA). The resulting assemblies were characterized by scanning and transmission electron microscopies, by dark-field optical microscopy, and by visible absorption spectroscopy. The length of the chains was modulated by varying the concentration of additive. More importantly, the spacing between Au nanoparticles was dictated entirely by the shell thickness of the Au@PS-b-PAA starting material. Far-field polarization microspectroscopy demonstrated directional surface plasmon coupling in a straightened nanoparticle chain, which is a basic requirement for the use of these assemblies as plasmon waveguides.


Assuntos
Resinas Acrílicas/química , Ouro/química , Nanoestruturas/química , Poliestirenos/química , Micelas , Estrutura Molecular , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA