Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(2): 462-77, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120142

RESUMO

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutação , Proteoma/análise , Transdução de Sinais
2.
Am J Transplant ; 22(3): 843-852, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859569

RESUMO

Epithelial-mesenchymal transition (EMT) has been implicated to play a role in chronic lung allograft dysfunction (CLAD). Liver kinase B1 (LKB1), a tumor suppressor gene, can regulate EMT. However, its role in CLAD development following lung transplantation remains unknown. Using qRT-PCR, biopsies from lung transplant recipients with bronchiolitis obliterans syndrome (BOS) demonstrated significant downregulation of LKB1 (p = .0001), compared to stable biopsies. To determine the role of LKB1 in EMT development, we analyzed EMT in human bronchial epithelial cell line BEAS-2B. Knockdown of LKB1 by siRNA significantly dysregulated mesenchymal markers expression in BEAS-2B cells. Following incubation of human primary bronchial epithelial cell or BEAS-2B cells with exosomes isolated from BOS or stable lung transplant recipients, LKB1 expression was inhibited when incubated with BOS-exosome. Incubation with BOS-exosomes also decreased LKB1 expression and induced EMT markers in air-liquid interface culture method. Our results provide novel evidence that exosomes released from transplanted lungs undergoing chronic rejection are associated with inactivated tumor suppressor gene LKB1 and this loss induces EMT leading to the pathogenesis of CLAD following human lung transplantation.


Assuntos
Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Transplante de Pulmão , Aloenxertos , Biomarcadores , Bronquiolite Obliterante/etiologia , Transição Epitelial-Mesenquimal , Genes Supressores de Tumor , Humanos , Fígado , Pulmão , Transplante de Pulmão/efeitos adversos
3.
Neurosurg Focus ; 52(6): E9, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35921184

RESUMO

OBJECTIVE: Communication between neurosurgeons and pathologists is mandatory for intraoperative decision-making and optimization of resection, especially for invasive masses. Handheld confocal laser endomicroscopy (CLE) technology provides in vivo intraoperative visualization of tissue histoarchitecture at cellular resolution. The authors evaluated the feasibility of using an innovative surgical telepathology software platform (TSP) to establish real-time, on-the-fly remote communication between the neurosurgeon using CLE and the pathologist. METHODS: CLE and a TSP were integrated into the surgical workflow for 11 patients with brain masses (6 patients with gliomas, 3 with other primary tumors, 1 with metastasis, and 1 with reactive brain tissue). Neurosurgeons used CLE to generate video-flow images of the operative field that were displayed on monitors in the operating room. The pathologist simultaneously viewed video-flow CLE imaging using a digital tablet and communicated with the surgeon while physically located outside the operating room (1 pathologist was in another state, 4 were at home, and 6 were elsewhere in the hospital). Interpretations of the still CLE images and video-flow CLE imaging were compared with the findings on the corresponding frozen and permanent H&E histology sections. RESULTS: Overall, 24 optical biopsies were acquired with mean ± SD 2 ± 1 optical biopsies per case. The mean duration of CLE system use was 1 ± 0.3 minutes/case and 0.25 ± 0.23 seconds/optical biopsy. The first image with identifiable histopathological features was acquired within 6 ± 0.1 seconds. Frozen sections were processed within 23 ± 2.8 minutes, which was significantly longer than CLE usage (p < 0.001). Video-flow CLE was used to correctly interpret tissue histoarchitecture in 96% of optical biopsies, which was substantially higher than the accuracy of using still CLE images (63%) (p = 0.005). CONCLUSIONS: When CLE is employed in tandem with a TSP, neurosurgeons and pathologists can view and interpret CLE images remotely and in real time without the need to biopsy tissue. A TSP allowed neurosurgeons to receive real-time feedback on the optically interrogated tissue microstructure, thereby improving cross-functional communication and intraoperative decision-making and resulting in significant workflow advantages over the use of frozen section analysis.


Assuntos
Glioma , Telepatologia , Endoscopia/métodos , Humanos , Lasers , Microscopia Confocal/métodos
4.
Pituitary ; 22(5): 514-519, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401793

RESUMO

PURPOSE: The 2017 World Health Organization classification of pituitary tumors redefined pituitary null cell adenomas (NCAs) by restricting this diagnostic category to pituitary tumors that are negative for pituitary transcription factors and adenohypophyseal hormones. The clinical behavior of this redefined entity has not been widely studied, and this is a major shortcoming of the classification. This study evaluated the imaging and clinical features of NCAs from two pituitary centers and compared them with those of gonadotroph adenomas (GAs). METHODS: Imaging, pathologic, and clinical characteristics of NCAs and GAs were retrospectively reviewed. Tumor immunohistochemistry was performed to confirm absence of adenohypophyseal hormones and pituitary transcription factor expression. RESULTS: Thirty-one NCAs were compared with 38 GAs. NCAs were more likely to invade the cavernous sinus (15/31 [48%] vs. 5/38 [13%], P = .003) and had a higher proliferative index (i.e., MIB-1 > 3%, 11/31 [35%] vs. 5/38 [13%], P = .04). Gross total resection was less likely in the NCA group (19/31 [61%] vs. 33/38 [87], P = .02). Progression-free survival was worse in the NCA cohort (5-year progression-free survival, 0.70 vs. 1.00; P = .011, by log-rank test). CONCLUSIONS: Compared with GAs, NCAs are more invasive at the time of presentation and have a more aggressive clinical course. This study provides evidence that NCAs represent a distinct clinicopathologic entity with behavior that differs adversely from that of GAs. This may inform clinical decision-making, including frequency of postoperative tumor surveillance and timing of adjunctive treatments.


Assuntos
Hipófise/diagnóstico por imagem , Hipófise/patologia , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/patologia , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Linfócitos Nulos/patologia , Masculino , Doenças da Hipófise/diagnóstico por imagem , Doenças da Hipófise/mortalidade , Doenças da Hipófise/patologia , Neoplasias Hipofisárias/mortalidade , Intervalo Livre de Progressão , Estudos Retrospectivos , Organização Mundial da Saúde
5.
J Neurooncol ; 138(2): 241-250, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29453678

RESUMO

The TNF receptor superfamily member Fn14 is overexpressed by many solid tumor types, including glioblastoma (GBM), the most common and lethal form of adult brain cancer. GBM is notable for a highly infiltrative growth pattern and several groups have reported that high Fn14 expression levels can increase tumor cell invasiveness. We reported previously that the mesenchymal and proneural GBM transcriptomic subtypes expressed the highest and lowest levels of Fn14 mRNA, respectively. Given the recent histopathological re-classification of human gliomas by the World Health Organization based on isocitrate dehydrogenase 1 (IDH1) gene mutation status, we extended this work by comparing Fn14 gene expression in IDH1 wild-type (WT) and mutant (R132H) gliomas and in cell lines engineered to overexpress the IDH1 R132H enzyme. We found that both low-grade and high-grade (i.e., GBM) IDH1 R132H gliomas exhibit low Fn14 mRNA and protein levels compared to IDH1 WT gliomas. Forced overexpression of the IDH1 R132H protein in glioma cells reduced Fn14 expression, while treatment of IDH1 R132H-overexpressing cells with the IDH1 R132H inhibitor AGI-5198 or the DNA demethylating agent 5-aza-2'-deoxycytidine increased Fn14 expression. These results support a role for Fn14 in the more aggressive and invasive phenotype associated with IDH1 WT tumors and indicate that the low levels of Fn14 gene expression noted in IDH1 R132H mutant gliomas may be due to epigenetic regulation via changes in DNA methylation.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Mutação , Receptor de TWEAK/metabolismo , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Citocina TWEAK/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Gradação de Tumores , RNA Mensageiro/metabolismo , Estudos Retrospectivos
7.
Neurosurg Focus ; 40(3): E11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26926051

RESUMO

OBJECTIVE: This study evaluated the utility, specificity, and sensitivity of intraoperative confocal laser endomicroscopy (CLE) to provide diagnostic information during resection of human brain tumors. METHODS: CLE imaging was used in the resection of intracranial neoplasms in 74 consecutive patients (31 male; mean age 47.5 years; sequential 10-month study period). Intraoperative in vivo and ex vivo CLE was performed after intravenous injection of fluorescein sodium (FNa). Tissue samples from CLE imaging-matched areas were acquired for comparison with routine histological analysis (frozen and permanent sections). CLE images were classified as diagnostic or nondiagnostic. The specificities and sensitivities of CLE and frozen sections for gliomas and meningiomas were calculated using permanent histological sections as the standard. RESULTS: CLE images were obtained for each patient. The mean duration of intraoperative CLE system use was 15.7 minutes (range 3-73 minutes). A total of 20,734 CLE images were correlated with 267 biopsy specimens (mean number of images/biopsy location, in vivo 84, ex vivo 70). CLE images were diagnostic for 45.98% in vivo and 52.97% ex vivo specimens. After initiation of CLE, an average of 14 in vivo images and 7 ex vivo images were acquired before identification of a first diagnostic image. CLE specificity and sensitivity were, respectively, 94% and 91% for gliomas and 93% and 97% for meningiomas. CONCLUSIONS: CLE with FNa provided intraoperative histological information during brain tumor removal. Specificities and sensitivities of CLE for gliomas and meningiomas were comparable to those for frozen sections. These data suggest that CLE could allow the interactive identification of tumor areas, substantially improving intraoperative decisions during the resection of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Fluoresceína , Corantes Fluorescentes , Monitorização Intraoperatória/métodos , Monitorização Intraoperatória/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluoresceína/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Humanos , Masculino , Microscopia Confocal/métodos , Microscopia Confocal/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
8.
J Biol Chem ; 288(30): 21887-97, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23775076

RESUMO

Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.


Assuntos
Movimento Celular/genética , Glioma/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Receptores do Fator de Necrose Tumoral/genética , Fator 2 Associado a Receptor de TNF/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citocina TWEAK , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Invasividade Neoplásica , Ligação Proteica/efeitos dos fármacos , Pseudópodes/genética , Pseudópodes/metabolismo , Interferência de RNA , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Receptor de TWEAK , Fatores de Necrose Tumoral/farmacologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
Neurosurg Focus ; 36(2): E16, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24484254

RESUMO

OBJECT: The authors sought to assess the feasibility of a handheld visible-wavelength confocal endomicroscope imaging system (Optiscan 5.1, Optiscan Pty., Ltd.) using a variety of rapid-acting fluorophores to provide histological information on gliomas, tumor margins, and normal brain in animal models. METHODS: Mice (n = 25) implanted with GL261 cells were used to image fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA), acridine orange (AO), acriflavine (AF), and cresyl violet (CV). A U251 glioma xenograft model in rats (n = 5) was used to image sulforhodamine 101 (SR101). A swine (n = 3) model with AO was used to identify confocal features of normal brain. Images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope. Histological samples were acquired through biopsies from matched imaging areas. Samples were visualized with a benchtop confocal microscope. Histopathological features in corresponding confocal images and photomicrographs of H & E-stained tissues were reviewed. RESULTS: Fluorescence induced by FNa, 5-ALA, AO, AF, CV, and SR101 and detected with the confocal endomicroscope allowed interpretation of histological features. Confocal endomicroscopy revealed satellite tumor cells within peritumoral tissue, a definitive tumor border, and striking fluorescent cellular and subcellular structures. Fluorescence in various tumor regions correlated with standard histology and known tissue architecture. Characteristic features of different areas of normal brain were identified as well. CONCLUSIONS: Confocal endomicroscopy provided rapid histological information precisely related to the site of microscopic imaging with imaging characteristics of cells related to the unique labeling features of the fluorophores. Although experimental with further clinical trial validation required, these data suggest that intraoperative confocal imaging can help to distinguish normal brain from tumor and tumor margin and may have application in improving intraoperative decisions during resection of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/patologia , Computadores de Mão , Modelos Animais de Doenças , Corantes Fluorescentes , Glioma/diagnóstico , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Ratos , Suínos
10.
Neurosurg Focus ; 36(2): E8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24484261

RESUMO

Glioblastoma is the most common primary brain tumor with a median 12- to 15-month patient survival. Improving patient survival involves better understanding the biological mechanisms of glioblastoma tumorigenesis and seeking targeted molecular therapies. Central to furthering these advances is the collection and storage of surgical biopsies (biobanking) for research. This paper addresses an imaging modality, confocal reflectance microscopy (CRM), for safely screening glioblastoma biopsy samples prior to biobanking to increase the quality of tissue provided for research and clinical trials. These data indicate that CRM can immediately identify cellularity of tissue biopsies from animal models of glioblastoma. When screening fresh human biopsy samples, CRM can differentiate a cellular glioblastoma biopsy from a necrotic biopsy without altering DNA, RNA, or protein expression of sampled tissue. These data illustrate CRM's potential for rapidly and safely screening clinical biopsy samples prior to biobanking, which demonstrates its potential as an effective screening technique that can improve the quality of tissue biobanked for patients with glioblastoma.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Animais , Bancos de Espécimes Biológicos/normas , Biópsia , Linhagem Celular Tumoral , Humanos , Microscopia Confocal/métodos , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38782593

RESUMO

BACKGROUND AND PURPOSE: DSC-MRI can be used to generate fractional tumor burden (FTB) maps, via application of relative CBV thresholds, to spatially differentiate glioblastoma recurrence from post treatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MRI protocol using preload, a moderate flip angle (MFA, 60°) and post-processing leakage correction. Recently, a DSC-MRI protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected RCBV equivalent to the reference protocol. This study aims to identify the RCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS: Fifty-two patients with grade IV GBM who had prior surgical resection and received chemotherapy and radiotherapy were included in the study. Two sets of DSC-MRI data were collected sequentially first using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and co-registered with the anatomical post-contrast T1-weighted images. The reference MFA-based FTB maps were computed using previously published sRCBV thresholds (1.0 and 1.56). An ROC analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS: The mean sRCBV values of tumors across patients exhibited strong agreement (CCC = 0.99) between the two protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSION: For LFA-based FTB maps, a sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumor. FTB maps aids in surgical planning, guiding pathological diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MRI. ABBREVIATIONS: LFA = low flip angle; MFA = moderate flip angle; sRCBV = standardized relative cerebral blood volume; FTB = fractional tumor burden; PTRE = post treatment radiation effects; ROC = receiver operating characteristics; CCC = concordance correlation coefficient.

12.
J Neurosurg ; 140(2): 357-366, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542440

RESUMO

OBJECTIVE: Confocal laser endomicroscopy (CLE) is a US Food and Drug Administration-cleared intraoperative real-time fluorescence-based cellular resolution imaging technology that has been shown to image brain tumor histoarchitecture rapidly in vivo during neuro-oncological surgical procedures. An important goal for successful intraoperative implementation is in vivo use at the margins of infiltrating gliomas. However, CLE use at glioma margins has not been well studied. METHODS: Matching in vivo CLE images and tissue biopsies acquired at glioma margin regions of interest (ROIs) were collected from 2 institutions. All images were reviewed by 4 neuropathologists experienced in CLE. A scoring system based on the pathological features was implemented to score CLE and H&E images from each ROI on a scale from 0 to 5. Based on the H&E scores, all ROIs were divided into a low tumor probability (LTP) group (scores 0-2) and a high tumor probability (HTP) group (scores 3-5). The concordance between CLE and H&E scores regarding tumor probability was determined. The intraclass correlation coefficient (ICC) and diagnostic performance were calculated. RESULTS: Fifty-six glioma margin ROIs were included for analysis. Interrater reliability of the scoring system was excellent when used for H&E images (ICC [95% CI] 0.91 [0.86-0.94]) and moderate when used for CLE images (ICC [95% CI] 0.69 [0.40-0.83]). The ICCs (95% CIs) of the LTP group (0.68 [0.40-0.83]) and HTP group (0.68 [0.39-0.83]) did not differ significantly. The concordance between CLE and H&E scores was 61.6%. The sensitivity and specificity values of the scoring system were 79% and 37%. The positive predictive value (PPV) and negative predictive value were 65% and 53%, respectively. Concordance, sensitivity, and PPV were greater in the HTP group than in the LTP group. Specificity was higher in the newly diagnosed group than in the recurrent group. CONCLUSIONS: CLE may detect tumor infiltration at glioma margins. However, it is not currently dependable, especially in scenarios where low probability of tumor infiltration is expected. The proposed scoring system has excellent intrinsic interrater reliability, but its interrater reliability is only moderate when used with CLE images. These results suggest that this technology requires further exploration as a method for consistent actionable intraoperative guidance with high dependability across the range of tumor margin scenarios. Specific-binding and/or tumor-specific fluorophores, a CLE image atlas, and a consensus guideline for image interpretation may help with the translational utility of CLE.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Reprodutibilidade dos Testes , Microscopia Confocal/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Lasers
13.
Acta Neuropathol Commun ; 12(1): 117, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014393

RESUMO

Papillary tumor of the pineal region (PTPR) is an uncommon tumor of the pineal region with distinctive histopathologic and molecular characteristics. Experience is limited with respect to its molecular heterogeneity and clinical characteristics. Here, we describe 39 new cases and combine these with 37 previously published cases for a cohort of 76 PTPR's, all confirmed by methylation profiling. As previously reported, two main methylation groups were identified (PTPR-A and PTPR-B). In our analysis we extended the subtyping into three subtypes: PTPR-A, PTPR-B1 and PTPR-B2 supported by DNA methylation profile and genomic copy number variations. Frequent loss of chromosome 3 or 14 was found in PTPR-B1 tumors but not in PTPR-B2. Examination of clinical outcome showed that nearly half (14/30, 47%) of examined patients experienced tumor progression with significant difference among the subtypes (p value = 0.046). Our analysis extends the understanding of this uncommon but distinct neuroepithelial tumor by describing its molecular heterogeneity and clinical outcomes, including its tendency towards tumor recurrence.


Assuntos
Metilação de DNA , Glândula Pineal , Pinealoma , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Pinealoma/genética , Pinealoma/patologia , Adolescente , Adulto Jovem , Criança , Glândula Pineal/patologia , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pré-Escolar , Variações do Número de Cópias de DNA
14.
J Neurosurg Case Lessons ; 6(12)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37756481

RESUMO

BACKGROUND: Intraoperative frozen sections play a critical role in surgical strategy because of their ability to provide rapid histopathological information. In cases in which intraoperative biopsy carries a significant risk of bleeding, intraoperative confocal laser endomicroscopy (CLE) can assist in decision-making. OBSERVATIONS: The authors present a rare case of a large sellar hemangioblastoma. Preoperative radiographic imaging and normal pituitary function suggested a differential diagnosis that included hemangioblastoma. The patient underwent partial preoperative embolization and a right-sided pterional craniotomy for resection of the lesion. Gross intraoperative examination revealed a highly vascular sellar lesion requiring circumferential dissection to minimize blood loss. The serious vascularity precluded intraoperative frozen section analysis, and CLE imaging was performed. CLE imaging provided excellent visualization of the remarkable vascular structure and characteristic histoarchitecture with microvasculature, intracytoplasmic vacuoles, and atypical cells consistent with hemangioblastoma. Resection and decompression of the chiasm was accomplished, and the patient was discharged with improved vision. The final histopathological diagnosis was hemangioblastoma. LESSONS: When the benefits of obtaining intraoperative frozen sections greatly outweigh the associated risks, CLE imaging can aid in decision-making. CLE imaging offers real-time, on-the-fly evaluation of intraoperative tissue without the need to biopsy a vascular lesion.

15.
Transl Res ; 256: 56-72, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640905

RESUMO

Cushing's disease (CD) is a serious endocrine disorder attributed to an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that that subsequently leads to chronic hypercortisolemia. PitNET regression has been reported following treatment with the investigational selective glucocorticoid receptor (GR) modulator relacorilant, but the mechanisms behind that effect remain unknown. Human PitNET organoid models were generated from induced human pluripotent stem cells (iPSCs) or fresh tissue obtained from CD patient PitNETs (hPITOs). Genetically engineered iPSC derived organoids were used to model the development of corticotroph PitNETs expressing USP48 (iPSCUSP48) or USP8 (iPSCUSP8) somatic mutations. Organoids were treated with the GR antagonist mifepristone or the GR modulator relacorilant with or without somatostatin receptor (SSTR) agonists pasireotide or octreotide. In iPSCUSP48 and iPSCUSP8 cultures, mifepristone induced a predominant expression of SSTR2 with a concomitant increase in ACTH secretion and tumor cell proliferation. Relacorilant predominantly induced SSTR5 expression and tumor cell apoptosis with minimal ACTH induction. Hedgehog signaling mediated the induction of SSTR2 and SSTR5 in response to mifepristone and relacorilant. Relacorilant sensitized PitNET organoid responsiveness to pasireotide. Therefore, our study identified the potential therapeutic use of relacorilant in combination with somatostatin analogs and demonstrated the advantages of relacorilant over mifepristone, supporting its further development for use in the treatment of Cushing's disease patients.


Assuntos
Hipersecreção Hipofisária de ACTH , Neoplasias Hipofisárias , Humanos , Corticotrofos/metabolismo , Corticotrofos/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapêutico , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hipersecreção Hipofisária de ACTH/metabolismo , Hipersecreção Hipofisária de ACTH/patologia , Mifepristona/farmacologia , Mifepristona/metabolismo , Mifepristona/uso terapêutico , Proteínas Hedgehog , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Hormônio Adrenocorticotrópico/farmacologia , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/uso terapêutico
16.
J Neurosurg ; 138(3): 587-597, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901698

RESUMO

OBJECTIVE: The authors evaluated the feasibility of using the first clinical-grade confocal laser endomicroscopy (CLE) system using fluorescein sodium for intraoperative in vivo imaging of brain tumors. METHODS: A CLE system cleared by the FDA was used in 30 prospectively enrolled patients with 31 brain tumors (13 gliomas, 5 meningiomas, 6 other primary tumors, 3 metastases, and 4 reactive brain tissue). A neuropathologist classified CLE images as interpretable or noninterpretable. Images were compared with corresponding frozen and permanent histology sections, with image correlation to biopsy location using neuronavigation. The specificities and sensitivities of CLE images and frozen sections were calculated using permanent histological sections as the standard for comparison. A recently developed surgical telepathology software platform was used in 11 cases to provide real-time intraoperative consultation with a neuropathologist. RESULTS: Overall, 10,713 CLE images from 335 regions of interest were acquired. The mean duration of the use of the CLE system was 7 minutes (range 3-18 minutes). Interpretable CLE images were obtained in all cases. The first interpretable image was acquired within a mean of 6 (SD 10) images and within the first 5 (SD 13) seconds of imaging; 4896 images (46%) were interpretable. Interpretable image acquisition was positively correlated with study progression, number of cases per surgeon, cumulative length of CLE time, and CLE time per case (p ≤ 0.01). The diagnostic accuracy, sensitivity, and specificity of CLE compared with frozen sections were 94%, 94%, and 100%, respectively, and the diagnostic accuracy, sensitivity, and specificity of CLE compared with permanent histological sections were 92%, 90%, and 94%, respectively. No difference was observed between lesion types for the time to first interpretable image (p = 0.35). Deeply located lesions were associated with a higher percentage of interpretable images than superficial lesions (p = 0.02). The study met the primary end points, confirming the safety and feasibility and acquisition of noninvasive digital biopsies in all cases. The study met the secondary end points for the duration of CLE use necessary to obtain interpretable images. A neuropathologist could interpret the CLE images in 29 (97%) of 30 cases. CONCLUSIONS: The clinical-grade CLE system allows in vivo, intraoperative, high-resolution cellular visualization of tissue microstructure and identification of lesional tissue patterns in real time, without the need for tissue preparation.


Assuntos
Neoplasias Encefálicas , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Microscopia Confocal/métodos , Neoplasias Encefálicas/cirurgia , Lasers
17.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770427

RESUMO

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
18.
Mol Cancer ; 11: 65, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22966858

RESUMO

BACKGROUND: The invasion of glioblastoma cells into regions of the normal brain is a critical factor that limits current therapies for malignant astrocytomas. Previous work has identified roles for the Rho family guanine nucleotide exchange factors Trio and Vav3 in glioblastoma invasion. Both Trio and Vav3 act on the small GTPase RhoG. We therefore examined the role of RhoG in the invasive behavior of glioblastoma cells. RESULTS: We found that siRNA-mediated depletion of RhoG strongly inhibits invasion of glioblastoma cells through brain slices ex vivo. In addition, depletion of RhoG has a marginal effect on glioblastoma cell proliferation, but significantly inhibits glioblastoma cell survival in colony formation assays. We also observed that RhoG is activated by both HGF and EGF, two factors that are thought to be clinically relevant drivers of glioblastoma invasive behavior, and that RhoG is overexpressed in human glioblastoma tumors versus non-neoplastic brain. In search of a mechanism for the contribution of RhoG to the malignant behavior of glioblastoma cells, we found that depletion of RhoG strongly inhibits activation of the Rac1 GTPase by both HGF and EGF. In line with this observation, we also show that RhoG contributes to the formation of lamellipodia and invadopodia, two functions that have been shown to be Rac1-dependent. CONCLUSIONS: Our functional analysis of RhoG in the context of glioblastoma revealed a critical role for RhoG in tumor cell invasion and survival. These results suggest that targeting RhoG-mediated signaling presents a novel avenue for glioblastoma therapy.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Neoplasias Encefálicas/química , Neoplasias Encefálicas/metabolismo , Processos de Crescimento Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/química , Glioblastoma/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Neuropeptídeos/metabolismo , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Putamen/química , Putamen/metabolismo , RNA Interferente Pequeno/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas rho de Ligação ao GTP/análise , Proteínas rho de Ligação ao GTP/genética
19.
Cureus ; 14(11): e31449, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523718

RESUMO

Glioneuronal tumors are rare central nervous system tumors with heterogeneous histological and molecular features. While the majority are low grade, a small percentage can behave aggressively. Due to the rarity of these tumors, there is no consensus on how to treat high-grade glioneuronal tumors, and they are often managed similarly to glial tumors. With the advent of molecular profiling, management decisions are increasingly determined by molecular alterations in the tumor rather than the tumor type, which can be a useful approach for tumor types that do not have robust supportive clinical trial data due to low prevalence. We present a case of an 18-year-old patient with a high-grade glioneuronal neoplasm initially treated with craniospinal irradiation, vincristine, and cyclophosphamide. He presented eight years later with a recurrent tumor and was found to be positive for MEF2D-NTRK1 fusion. He was treated with surgical resection and postoperative intensity-modulated radiation therapy (IMRT; 55.8 Gy) with concurrent temozolomide, followed by the NTRK inhibitor larotrectinib. He achieved a radiographic response, with a decrease in residual enhancement and radiographic improvement over the course of treatment. He remained in clinical and radiographic remission for six months. This demonstrates the successful treatment of a high-grade glioneuronal NTRK fusion-positive tumor with larotrectinib, which has only been previously reported once in the literature.

20.
Front Oncol ; 12: 979748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091140

RESUMO

Background: The new US Food and Drug Administration-cleared fluorescein sodium (FNa)-based confocal laser endomicroscopy (CLE) imaging system allows for intraoperative on-the-fly cellular level imaging. Two feasibility studies have been completed with intraoperative use of this CLE system in ex vivo and in vivo modalities. This study quantitatively compares the image quality and diagnostic performance of ex vivo and in vivo CLE imaging. Methods: Images acquired from two prospective CLE clinical studies, one ex vivo and one in vivo, were analyzed quantitatively. Two image quality parameters - brightness and contrast - were measured using Fiji software and compared between ex vivo and in vivo images for imaging timing from FNa dose and in glioma, meningioma, and intracranial metastatic tumor cases. The diagnostic performance of the two studies was compared. Results: Overall, the in vivo images have higher brightness and contrast than the ex vivo images (p < 0.001). A weak negative correlation exists between image quality and timing of imaging after FNa dose for the ex vivo images, but not the in vivo images. In vivo images have higher image quality than ex vivo images (p < 0.001) in glioma, meningioma, and intracranial metastatic tumor cases. In vivo imaging yielded higher sensitivity and negative predictive value than ex vivo imaging. Conclusions: In our setting, in vivo CLE optical biopsy outperforms ex vivo CLE by producing higher quality images and less image deterioration, leading to better diagnostic performance. These results support the in vivo modality as the modality of choice for intraoperative CLE imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA