RESUMO
Zymogram assays have been used extensively to identify novel peptidoglycan hydrolases. In this study it is reported that the zymogram is susceptible to false positive results when highly positively charged proteins are assayed. As an example, we report on the case of the ChiZ membrane protein from the Mycobacterium tuberculosis divisome, which previously was described as a peptidoglycan hydrolase. Even though the full length ChiZ protein was able to produce positive assay results, other direct methods for measuring peptidoglycan hydrolysis do not provide convincing evidence that ChiZ has peptidoglycan hydrolysis activity. We show that the false positive result is produced by the highly positively charged N-terminal region of ChiZ. Thus, we developed a zymogram control that can be used to identify false positives results. This control assay lacks the refolding step in the normal zymogram assay. For lysozyme the control assay shows no activity, while the N-terminal region of ChiZ shows a false positive result. Given the limitations of the zymogram assay to reliably identify peptidoglycan hydrolases, we recommend using the zymogram control assay together with other methods to evaluate possible peptidoglycan hydrolysis activity.
Assuntos
Proteínas de Bactérias/análise , Proteínas do Citoesqueleto/análise , Eletroforese em Gel de Poliacrilamida , Mycobacterium tuberculosis/química , N-Acetil-Muramil-L-Alanina Amidase/análise , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Reações Falso-Positivas , Humanos , N-Acetil-Muramil-L-Alanina Amidase/metabolismoRESUMO
Mtb infects a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-ring to the inner membrane. Here we show that the transmembrane protein FtsQ is a potential membrane anchor of the Mtb Z-ring. In the otherwise disordered cytoplasmic region of FtsQ, a 29-residue, Arg/Ala-rich α-helix is formed that interacts with upstream acidic residues in solution and with acidic lipids at the membrane surface. This helix also binds to the GTPase domain of FtsZ, with implications for drug binding and Z-ring formation.
Assuntos
Proteínas de Escherichia coli , Tuberculose , Humanos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Tuberculose/tratamento farmacológico , Proteínas de Membrana/metabolismoRESUMO
Poly(UG) or "pUG" RNAs are UG or GU dinucleotide repeat sequences which are highly abundant in eukaryotes. Post-transcriptional addition of pUGs to RNA 3' ends marks mRNAs as vectors for gene silencing in C. elegans. We previously determined the crystal structure of pUG RNA bound to the ligand N-methyl mesoporphyrin IX (NMM), but the structure of free pUG RNA is unknown. Here we report the solution structure of the free pUG RNA (GU)12, as determined by nuclear magnetic resonance spectroscopy and small and wide-angle x-ray scattering (NMR-SAXS-WAXS). The low complexity sequence and 4-fold symmetry of the structure result in overlapped NMR signals that complicate chemical shift assignment. We therefore utilized single site-specific deoxyribose modifications which did not perturb the structure and introduced well-resolved methylene signals that are easily identified in NMR spectra. The solution structure ensemble has a root mean squared deviation (RMSD) of 0.62 Å and is a compact, left-handed quadruplex with a Z-form backbone, or "pUG fold." Overall, the structure agrees with the crystal structure of (GU)12 bound to NMM, indicating the pUG fold is unaltered by docking of the NMM ligand. The solution structure reveals conformational details that could not be resolved by x-ray crystallography, which explain how the pUG fold can form within longer RNAs.
Assuntos
Poli G , Poli U , RNA , Animais , Caenorhabditis elegans/genética , Cristalografia por Raios X , Ligantes , Modelos Moleculares , RNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Poli U/química , Poli G/química , Conformação de Ácido NucleicoRESUMO
The addition of poly(UG) ('pUG') repeats to 3' termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4) structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. The compact pUG fold binds six potassium ions and brings the RNA ends into close proximity. The biological importance of the pUG fold is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific 7-deaza substitutions that disrupt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA structural motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in noncoding regions of human RNAs, suggesting that the fold probably has biological roles beyond gene silencing.
Assuntos
Proteínas de Caenorhabditis elegans , Inativação Gênica , Humanos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNARESUMO
The only known required component of the newly described Type XI secretion system (TXISS) is an outer membrane protein (OMP) of the DUF560 family. TXISSOMPs are broadly distributed across proteobacteria, but properties of the cargo proteins they secrete are largely unexplored. We report biophysical, histochemical, and phenotypic evidence that Xenorhabdus nematophila NilC is surface exposed. Biophysical data and structure predictions indicate that NilC is a two-domain protein with a C-terminal, 8-stranded ß-barrel. This structure has been noted as a common feature of TXISS effectors and may be important for interactions with the TXISSOMP. The NilC N-terminal domain is more enigmatic, but our results indicate it is ordered and forms a ß-sheet structure, and bioinformatics suggest structural similarities to carbohydrate-binding proteins. X. nematophila NilC and its presumptive TXISSOMP partner NilB are required for colonizing the anterior intestine of Steinernema carpocapsae nematodes: the receptacle of free-living, infective juveniles and the anterior intestinal cecum (AIC) in juveniles and adults. We show that, in adult nematodes, the AIC expresses a Wheat Germ Agglutinin (WGA)-reactive material, indicating the presence of N-acetylglucosamine or N-acetylneuraminic acid sugars on the AIC surface. A role for this material in colonization is supported by the fact that exogenous addition of WGA can inhibit AIC colonization by X. nematophila. Conversely, the addition of exogenous purified NilC increases the frequency with which X. nematophila is observed at the AIC, demonstrating that abundant extracellular NilC can enhance colonization. NilC may facilitate X. nematophila adherence to the nematode intestinal surface by binding to host glycans, it might support X. nematophila nutrition by cleaving sugars from the host surface, or it might help protect X. nematophila from nematode host immunity. Proteomic and metabolomic analyses of wild type X. nematophila compared to those lacking nilB and nilC revealed differences in cell wall and secreted polysaccharide metabolic pathways. Additionally, purified NilC is capable of binding peptidoglycan, suggesting that periplasmic NilC may interact with the bacterial cell wall. Overall, these findings support a model that NilB-regulated surface exposure of NilC mediates interactions between X. nematophila and host surface glycans during colonization. This is a previously unknown function for a TXISS.
RESUMO
Many physiological and pathophysiological processes, including Mycobacterium tuberculosis (Mtb) cell division, may involve fuzzy membrane association by proteins via intrinsically disordered regions. The fuzziness is extreme when the conformation and pose of the bound protein and the composition of the proximal lipids are all highly dynamic. Here, we tackled the challenge in characterizing the extreme fuzzy membrane association of the disordered, cytoplasmic N-terminal region (NT) of ChiZ, an Mtb divisome protein, by combining solution and solid-state NMR spectroscopy and molecular dynamics simulations. While membrane-associated NT does not gain any secondary structure, its interactions with lipids are not random, but formed largely by Arg residues predominantly in the second, conserved half of the NT sequence. As NT frolics on the membrane, lipids quickly redistribute, with acidic lipids, relative to zwitterionic lipids, preferentially taking up Arg-proximal positions. The asymmetric engagement of NT arises partly from competition between acidic lipids and acidic residues, all in the first half of NT, for Arg interactions. This asymmetry is accentuated by membrane insertion of the downstream transmembrane helix. This type of semispecific molecular recognition may be a general mechanism by which disordered proteins target membranes.
RESUMO
The type IV filament superfamily comprises widespread membrane-associated polymers in prokaryotes. The type II secretion system (T2SS), a virulence pathway in many pathogens, belongs to this superfamily. A knowledge gap in understanding of the T2SS is the molecular role of a small "pseudopilin" protein. Using multiple biophysical techniques, we have deciphered how this missing component of the Xcp T2SS architecture is structurally integrated, and thereby unlocked its function. We demonstrate that low-abundance XcpH is the adapter that bridges a trimeric initiating tip complex, XcpIJK, with a periplasmic filament of XcpG subunits. Each pseudopilin protein caps an XcpG protofilament in an overall pseudopilus compatible with dimensions of the periplasm and the outer membrane-spanning secretin through which substrates pass. Unexpectedly, to fulfill its adapter function, the XcpH N-terminal helix must be unwound, a property shared with XcpG subunits. We provide an experimentally validated three-dimensional structural model of a complete type IV filament.
Assuntos
Proteínas de Fímbrias/química , Sistemas de Secreção Tipo II/química , Sítios de Ligação , Proteínas de Fímbrias/metabolismo , Ligação Proteica , Multimerização Proteica , Pseudomonas aeruginosa/química , Sistemas de Secreção Tipo II/metabolismoRESUMO
How sequences of intrinsically disordered proteins (IDPs) code for their conformational dynamics is poorly understood. Here, we combined NMR spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations to characterize the conformations and dynamics of ChiZ1-64. MD simulations, first validated by SAXS and secondary chemical shift data, found scant α-helices or ß-strands but a considerable propensity for polyproline II (PPII) torsion angles. Importantly, several blocks of residues (e.g., 11-29) emerge as "correlated segments", identified by their frequent formation of PPII stretches, salt bridges, cation-π interactions, and sidechain-backbone hydrogen bonds. NMR relaxation experiments showed non-uniform transverse relaxation rates (R2s) and nuclear Overhauser enhancements (NOEs) along the sequence (e.g., high R2s and NOEs for residues 11-14 and 23-28). MD simulations further revealed that the extent of segmental correlation is sequence-dependent; segments where internal interactions are more prevalent manifest elevated "collective" motions on the 5-10 ns timescale and suppressed local motions on the sub-ns timescale. Amide proton exchange rates provides corroboration, with residues in the most correlated segment exhibiting the highest protection factors. We propose the correlated segment as a defining feature for the conformations and dynamics of IDPs.