Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Immunol ; 85(3): 110798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569354

RESUMO

BACKGROUND: Antigen-specific T-cell immunity is provided by dendritic cells (DCs), which are specialized antigen-presenting cells. Furthermore, they establish a link between innate and adaptive immune responses. Currently, DC modification is a new approach for the therapy of several disorders. During solid organ transplantation, Everolimus, which is a mammalian target of rapamycin (mTOR) inhibitor, was initially utilized to suppress the immune system's functionality. Due to the intervention of Everolimus in various signaling pathways in cells and its modulatory properties on the immune system, this study aims to investigate the effect of treatment with Everolimus on the maturation and expression of immune checkpoint genes in monocyte-derived DCs. METHODS: To isolate monocytes from PBMCs, the CD14 marker was used via the MACS method. Monocytes were cultured and induced to differentiate into monocyte-derived DCs by utilizing GM-CSF and IL-4 cytokines. On the fifth day, immature DCs were treated with Everolimus and incubated for 24 h. On the sixth day, the flow cytometry technique was used to investigate the effect of Everolimus on the phenotypic characteristics of DCs. In the end, the expression of immune checkpoint genes in both the Everolimus-treated and untreated DCs groups was assessed using the real-time PCR method. RESULTS: The findings of this research demonstrated that the administration of Everolimus to DCs led to a notable rise in human leukocyte antigen (HLA)-DR expression and a decrease in CD11c expression. Furthermore, there was a significant increase in the expression of immune checkpoint molecules, namely CTLA-4, VISTA, PD-L1, and BTLA, in DCs treated with Everolimus. CONCLUSION: The findings of this study show that Everolimus can target DCs and affect their phenotype and function in order to shift them toward a partially tolerogenic state. However, additional research is required to gain a comprehensive understanding of the precise impact of Everolimus on the activation status of DCs.


Assuntos
Diferenciação Celular , Células Dendríticas , Everolimo , Monócitos , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Everolimo/farmacologia , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Células Cultivadas , Diferenciação Celular/efeitos dos fármacos , Proteínas de Checkpoint Imunológico/metabolismo , Proteínas de Checkpoint Imunológico/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA