Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 76(6): 872-884.e5, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31606273

RESUMO

The Ras GTPases are frequently mutated in human cancer, and, although the Raf kinases are essential effectors of Ras signaling, the tumorigenic properties of specific Ras-Raf complexes are not well characterized. Here, we examine the ability of individual Ras and Raf proteins to interact in live cells using bioluminescence resonance energy transfer (BRET) technology. We find that C-Raf binds all mutant Ras proteins with high affinity, whereas B-Raf exhibits a striking preference for mutant K-Ras. This selectivity is mediated by the acidic, N-terminal segment of B-Raf and requires the K-Ras polybasic region for high-affinity binding. In addition, we find that C-Raf is critical for mutant H-Ras-driven signaling and that events stabilizing B-Raf/C-Raf dimerization, such as Raf inhibitor treatment or certain B-Raf mutations, can allow mutant H-Ras to engage B-Raf with increased affinity to promote tumorigenesis, thus revealing a previously unappreciated role for C-Raf in potentiating B-Raf function.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Neoplasias/enzimologia , Quinases raf/metabolismo , Proteínas ras/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Mutação , Células NIH 3T3 , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética , Esferoides Celulares , Quinases raf/genética , Proteínas ras/genética
2.
Nucleic Acids Res ; 52(11): 6647-6661, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38587193

RESUMO

The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Multimerização Proteica , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA Viral/metabolismo , RNA Viral/química , RNA Viral/genética , Ligação Proteica , Sítios de Ligação , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Montagem de Vírus/genética , Humanos , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , COVID-19/virologia
3.
Proc Natl Acad Sci U S A ; 120(5): e2208960120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689660

RESUMO

The majority of pathogenic mutations in the neurofibromatosis type I (NF1) gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Humanos , Neurofibromina 1/metabolismo , Neurofibromatose 1/genética , Dimerização , Mutação , Mutação de Sentido Incorreto
4.
J Biol Chem ; 300(2): 105650, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237681

RESUMO

Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(ß,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo , Espectroscopia de Ressonância Magnética , Transdução de Sinais , Mutação
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091470

RESUMO

RAF inhibitors unexpectedly induce ERK signaling in normal and tumor cells with elevated RAS activity. Paradoxical activation is believed to be RAS dependent. In this study, we showed that LY3009120, a pan-RAF inhibitor, can unexpectedly cause paradoxical ERK activation in KRASG12C-dependent lung cancer cell lines, when KRAS is inhibited by ARS1620, a KRASG12C inhibitor. Using H/N/KRAS-less mouse embryonic fibroblasts, we discovered that classical RAS proteins are not essential for RAF inhibitor-induced paradoxical ERK signaling. In their absence, RAF inhibitors can induce ERK phosphorylation, ERK target gene transcription, and cell proliferation. We further showed that the MRAS/SHOC2 complex is required for this process. This study highlights the complexity of the allosteric RAF regulation by RAF inhibitors, and the importance of other RAS-related proteins in this process.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Quinases raf/antagonistas & inibidores , Proteínas ras/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases raf/metabolismo , Proteínas ras/fisiologia
6.
Proc Natl Acad Sci U S A ; 119(18): e2201433119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476528

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Camelus , Humanos , Camundongos , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética
7.
Anal Chem ; 96(13): 5223-5231, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498381

RESUMO

Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.


Assuntos
Proteômica , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Sítios de Ligação
8.
Protein Expr Purif ; 220: 106488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679188

RESUMO

The tobacco etch virus (TEV) protease is a commonly used reagent for removal of solubility and purification tags from recombinant proteins and is cited as being highly specific for its canonical cleavage site. Flexibility in some amino acids within this recognition sequence has been described in the literature but researchers generally assume few native human proteins will carry off-target sequences for TEV cleavage. We report here the aberrant cleavage of three human proteins with non-canonical TEV protease cleavage sites and identify broader sequence specificity rules that can be used to predict unwanted cleavage of recombinant proteins. Using these rules, 456 human proteins were identified that could be substrates for unwanted TEV protease cleavage.


Assuntos
Endopeptidases , Humanos , Endopeptidases/química , Endopeptidases/metabolismo , Endopeptidases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteólise , Especificidade por Substrato
9.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395209

RESUMO

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sefarose , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380736

RESUMO

RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Espectrometria de Massas , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32913056

RESUMO

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular
12.
Clin Infect Dis ; 74(6): 1030-1038, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34185847

RESUMO

BACKGROUND: The extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and transmission in Mali and the surrounding region is not well understood. We aimed to estimate the cumulative incidence of SARS-CoV-2 in 3 communities and understand factors associated with infection. METHODS: Between July 2020 and January 2021, we collected blood samples and demographic, social, medical, and self-reported symptoms information from residents aged 6 months and older over 2 study visits. SARS-CoV-2 antibodies were measured using a highly specific 2-antigen enzyme-linked immunosorbent assay optimized for use in Mali. We calculated cumulative adjusted seroprevalence for each community and evaluated factors associated with serostatus at each visit by univariate and multivariate analysis. RESULTS: Overall, 94.8% (2533/2672) of participants completed both study visits. A total of 31.3% (837/2672) were aged <10 years, 27.6% (737/2672) were aged 10-17 years, and 41.1% (1098/2572) were aged ≥18 years. The cumulative SARS-CoV-2 exposure rate was 58.5% (95% confidence interval, 47.5-69.4). This varied between sites and was 73.4% in the urban community of Sotuba, 53.2% in the rural town of Bancoumana, and 37.1% in the rural village of Donéguébougou. Study site and increased age were associated with serostatus at both study visits. There was minimal difference in reported symptoms based on serostatus. CONCLUSIONS: The true extent of SARS-CoV-2 exposure in Mali is greater than previously reported and may now approach hypothetical "herd immunity" in urban areas. The epidemiology of the pandemic in the region may be primarily subclinical and within background illness rates.

13.
J Am Chem Soc ; 144(9): 4196-4205, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213144

RESUMO

KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-µs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Fenômenos Fisiológicos Celulares , Humanos , Conformação Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química
14.
Emerg Infect Dis ; 28(2): 440-444, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076009

RESUMO

Inhabitants of the Greater Mekong Subregion in Cambodia are exposed to pathogens that might influence serologic cross-reactivity with severe acute respiratory syndrome coronavirus 2. A prepandemic serosurvey of 528 malaria-infected persons demonstrated higher-than-expected positivity of nonneutralizing IgG to spike and receptor-binding domain antigens. These findings could affect interpretation of large-scale serosurveys.


Assuntos
COVID-19 , Malária , Anticorpos Antivirais , Camboja/epidemiologia , Humanos , Malária/epidemiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
15.
Protein Expr Purif ; 193: 106061, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131438

RESUMO

The SHOC2-MRAS-PPP1CA (SMP) complex is a holoenzyme that plays a vital role in the MAP kinase signaling pathway. Previous attempts to produce this challenging three-protein complex have relied on co-infection with multiple viruses and the use of affinity tags to attempt to isolate functional recombinant protein complexes. Leucine-rich repeat containing proteins have been historically challenging to express, and we hypothesized that co-expression of appropriate chaperones may be necessary for optimal production. We describe here how the SUGT1 chaperone can, in conjunction with polycistronic protein expression in baculovirus-infected insect cells, dramatically enhance production yield and quality of recombinant SHOC2, the SMP complex, and other leucine-rich repeat proteins.


Assuntos
Baculoviridae , Proteínas de Repetições Ricas em Leucina , Baculoviridae/genética , Sistema de Sinalização das MAP Quinases , Proteínas Recombinantes/genética
16.
J Infect Dis ; 223(5): 802-804, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33257936

RESUMO

Emergence of a new spike protein variant (D614G) with increased infectivity has prompted many to analyze its role in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. There is concern regarding whether an individual exposed to one variant of a virus will have cross-reactive memory to the second variant. Accordingly, we analyzed the serologic reactivity of both variants, and we found that antibodies from 88 donors from a high-incidence population reacted toward both the original spike and the D614 spike variant. These data suggest that patients who are exposed to either variant have cross-responsive humoral immunity. This represents an important finding both for SARS-CoV-2 disease biology and for therapeutics.


Assuntos
COVID-19/diagnóstico , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
17.
J Infect Dis ; 224(1): 49-59, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33755731

RESUMO

BACKGROUND: We investigated frequency of reinfection with seasonal human coronaviruses (HCoVs) and serum antibody response following infection over 8 years in the Household Influenza Vaccine Evaluation (HIVE) cohort. METHODS: Households were followed annually for identification of acute respiratory illness with reverse-transcription polymerase chain reaction-confirmed HCoV infection. Serum collected before and at 2 time points postinfection were tested using a multiplex binding assay to quantify antibody to seasonal, severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins and SARS-CoV-2 spike subdomains and N protein. RESULTS: Of 3418 participants, 40% were followed for ≥3 years. A total of 1004 HCoV infections were documented; 303 (30%) were reinfections of any HCoV type. The number of HCoV infections ranged from 1 to 13 per individual. The mean time to reinfection with the same type was estimated at 983 days for 229E, 578 days for HKU1, 615 days for OC43, and 711 days for NL63. Binding antibody levels to seasonal HCoVs were high, with little increase postinfection, and were maintained over time. Homologous, preinfection antibody levels did not significantly correlate with odds of infection, and there was little cross-response to SARS-CoV-2 proteins. CONCLUSIONS: Reinfection with seasonal HCoVs is frequent. Binding anti-spike protein antibodies do not correlate with protection from seasonal HCoV infection.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus , Características da Família , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Síndrome Respiratória Aguda Grave/epidemiologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Coinfecção/epidemiologia , Coronavirus/classificação , Coronavirus/genética , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas/imunologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/virologia , Estimativa de Kaplan-Meier , Michigan/epidemiologia , Modelos de Riscos Proporcionais , Vigilância em Saúde Pública , Reinfecção/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Estações do Ano , Estudos Soroepidemiológicos , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Carga Viral
18.
J Infect Dis ; 224(12): 2001-2009, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612499

RESUMO

BACKGROUND: False positivity may hinder the utility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological tests in sub-Saharan Africa. METHODS: From 312 Malian samples collected before 2020, we measured antibodies to the commonly tested SARS-CoV-2 antigens and 4 other betacoronaviruses by enzyme-linked immunosorbent assay (ELISA). In a subset of samples, we assessed antibodies to a panel of Plasmodium falciparum antigens by suspension bead array and functional antiviral activity by SARS-CoV-2 pseudovirus neutralization assay. We then evaluated the performance of an ELISA using SARS-CoV-2 spike protein and receptor-binding domain developed in the United States using Malian positive and negative control samples. To optimize test performance, we compared single- and 2-antigen approaches using existing assay cutoffs and population-specific cutoffs. RESULTS: Background reactivity to SARS-CoV-2 antigens was common in prepandemic Malian samples. The SARS-CoV-2 reactivity varied between communities, increased with age, and correlated negligibly/weakly with other betacoronavirus and P falciparum antibodies. No prepandemic samples demonstrated functional activity. Regardless of the cutoffs applied, test specificity improved using a 2-antigen approach. Test performance was optimal using a 2-antigen assay with population-specific cutoffs (sensitivity, 73.9% [95% confidence interval {CI}, 51.6-89.8]; specificity, 99.4% [95% CI, 97.7-99.9]). CONCLUSIONS: We have addressed the problem of SARS-CoV-2 seroassay performance in Africa by using a 2-antigen assay with cutoffs defined by performance in the target population.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , COVID-19/sangue , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Mali/epidemiologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/química
19.
J Proteome Res ; 20(9): 4427-4434, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34379411

RESUMO

Previous work employing five SARS-CoV-2 spike protein receptor-binding domain (RBD) constructs, comprising versions originally developed by Mt. Sinai or the Ragon Institute and later optimized in-house, revealed potential heterogeneity which led to questions regarding variable seropositivity assay performance. Each construct was subjected to N-deglycosylation and subsequent intact mass analysis, revealing significant deviations from predicted theoretical mass for all five proteins. Complementary tandem MS/MS analysis revealed the presence of an additional pyroGlu residue on the N-termini of the two Mt. Sinai RBD constructs, as well as on the N-terminus of the full-length spike protein from which they were derived, thus explaining the observed mass shift and definitively establishing the spike protein N-terminal sequence. Moreover, the observed mass additions for the three Ragon Institute RBD constructs were identified as variable N-terminal cleavage points within the signal peptide sequence employed for recombinant expression. To resolve this issue and minimize heterogeneity for further seropositivity assay development, the best-performing RBD construct was further optimized to exhibit complete homogeneity, as determined by both intact mass and tandem MS/MS analysis. This new RBD construct has been validated for seropositivity assay performance, is available to the greater scientific community, and is recommended for use in future assay development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Espectrometria de Massas em Tandem
20.
J Biol Chem ; 295(4): 1105-1119, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31836666

RESUMO

Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.


Assuntos
Neurofibromina 1/química , Neurofibromina 1/metabolismo , Multimerização Proteica , Células HEK293 , Humanos , Neurofibromina 1/ultraestrutura , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA