Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(13): 8001-8009, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32464058

RESUMO

Despite many studies on the toxicity of nanoplastic particles (NPPs) to aquatic invertebrates, the effects of ecological constituents such as humic substances (HSs) are often neglected. In our study, Daphnia magna was used to evaluate the effects of three HSs, natural organic matter (NOM), fulvic acid (FA), and humic acid (HA), on NPP toxicity and corona formation. Acute toxicities of NPPs were reduced by all HSs at environmentally relevant concentrations. NPPs elicited the upregulation of all genes related to detoxification, oxidative stress, and endocrine activity after 7 days of exposure. The presence of NOM or HA resulted in the mitigation of gene expression, whereas significantly higher upregulation of all of the genes was observed with FA. The presence of FA led to increased protein adsorption on NPPs in D. magna culture medium (eco-corona, EC) and homogenates (protein corona, PC), while there was less adsorption in the presence of HA. The highly abundant proteins identified in EC are involved in immune defense, cell maintenance, and antipredator response, while those in PC are responsible for lipid transport, antioxidant effects, and estrogen mediation. Our findings revealed the key influence of HSs on the toxicity of NPPs and provide an analytical and conceptual foundation for future study.


Assuntos
Daphnia , Substâncias Húmicas , Microplásticos , Coroa de Proteína , Animais , Microplásticos/toxicidade
2.
Mar Pollut Bull ; 183: 114048, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998524

RESUMO

This study assessed the seasonal variation in the magnitude of marine litter along the Gulf of Guinea coastline, Araromi seaside, Nigeria with a survey of twenty sampling sites. The total number of litter items collected was 29,029 comprising 7358 and 21,671 items in the dry and rainy season respectively. The average number of items per square meter was higher in the rainy season (1.80 ± 0.35) than in the dry season (0.61 ± 0.19). Plastic materials dominated the litter composition with 86 % and 91.8 % in the dry and rainy season respectively. The beach cleanliness assessed as clean coast index (CCI) depicted the beach as dirty (12.26 ± 3.74) during the dry season and extremely dirty (36.13 ± 6.91) in the rainy season. The hazardous item index (HII) also showed the coastline was littered with hazardous items. These results provide baseline data for marine litter management along the Gulf of Guinea coastlines and other coastlines in Africa.


Assuntos
Praias , Resíduos , Monitoramento Ambiental/métodos , Guiné , Nigéria , Plásticos , Resíduos/análise
3.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889573

RESUMO

Nanoplastic pollution is increasing worldwide and poses a threat to humans, animals, and ecological systems. High-throughput, reliable methods for the isolation and separation of NMPs from drinking water, wastewater, or environmental bodies of water are of interest. We investigated iron oxide nanoparticles (IONPs) with hydrophobic coatings to magnetize plastic particulate waste for removal. We produced and tested IONPs synthesized using air-free conditions and in atmospheric air, coated with several polydimethylsiloxane (PDMS)-based hydrophobic coatings. Particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, dynamic light scattering (DLS), X-ray diffraction (XRD) and zeta potential. The IONPs synthesized in air contained a higher percentage of the magnetic spinel phase and stronger magnetization. Binding and recovery of NMPs from both salt and freshwater samples was demonstrated. Specifically, we were able to remove 100% of particles in a range of sizes, from 2-5 mm, and nearly 90% of nanoplastic particles with a size range from 100 nm to 1000 nm using a simple 2-inch permanent NdFeB magnet. Magnetization of NMPs using IONPs is a viable method for separation from water samples for quantification, characterization, and purification and remediation of water.

4.
Sci Total Environ ; 755(Pt 1): 142422, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33011593

RESUMO

Despite Africa ranking top in mismanaged plastic waste, there is insufficient data on the extent of microplastics and its interaction with other contaminants in its ecosystems. Microplastics pollution has been documented globally, however, specific data from the continent is crucial for accurate risk assessment and to drive policies. We critically reviewed 56 articles from 1987 to 2020 and provide an overview of the current knowledge of the abundance and distribution of microplastics and associated contaminants in African aquatic systems and organisms. Most of the studies were carried out in the marine environment and there is currently no available data on the abundance of microplastic pollution in the African terrestrial environment. We show that across all studies, 5-100% of all sampled aquatic organisms contained microplastics. Concerning high levels of microplastics were reported in fish from Egypt compared to other parts of Africa and the world. Across all persistent organic pollutants sampled in microplastics, hopanes and phthalates were present at high concentrations while sodium and zinc were high relative to other trace metals reported. The most frequently occurring plastics were polyethylene followed by polypropylene and polystyrene. We found that most of the studies relied on visual inspection (52%) > FTIR (38%) > Raman spectroscopy (5%) > Scanning electron microscopy (3%) > Differential scanning calorimetry (2%) for identifying microplastics. Major gaps in sampling and identification techniques which may have overestimated or underestimated the current levels were identified. We discuss other research priorities and recommend solutions to address these issues associated with microplastic pollution in Africa.


Assuntos
Plásticos , Poluentes Químicos da Água , África , Animais , Ecossistema , Egito , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água/análise
5.
Mar Pollut Bull ; 164: 112006, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485015

RESUMO

The presence of micro/plastic particles has been reported in various seafood products. However, information on microplastics contamination in salts from African continent is very limited. This study analysed 23 brands of table salts from 8 African countries for microplastics using microscopic/spectroscopic techniques. South Africa showed the highest microplastics concentration (0-1.33 ± 0.32 particles/kg), Nigeria, Cameroun, and Ghana (0-0.33 ± 0.38 particles/kg each); characterized as polyvinyl acetate, polypropylene, and polyethylene. Other countries have no detectable microplastics at 0.3 µm filter pore size. To our best knowledge, this is the first study to characterize micro-fibres/plastics in table salts across African countries, confirming that it is an emission source of micro-fibres/plastics into the human food chain, highlighting the overarching need to understand their effects on human health.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Contaminação de Alimentos/análise , Gana , Humanos , Microplásticos , Nigéria , Sais , Cloreto de Sódio na Dieta/análise , África do Sul , Poluentes Químicos da Água/análise
6.
Chemosphere ; 253: 126787, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464756

RESUMO

Microplastic (MP) accumulation in the environment has become an issue of human and environmental importance. Great efforts were made recently to identify the sources of MP exposure to humans and their release into the environment. Here, we employed spectroscopic techniques to identify and characterize MP in consumer plastic food containers that are, in huge quantity, used for food delivery and disposable plastic cups for daily drinking. We determined the average weight of isolated MP per pack to be 12 ± 5.12 mg, 38 ± 5.29 mg, and 3 ± 1.13 mg for the round-shaped, rectangular-shaped plastic container and disposable plastic cups, respectively, with various morphological features including cubic, spherical, rod-like as well as irregular shapes, which may either be consumed by humans or released into the environment. This study demonstrates that new plastic containers can be an important source of direct human and environmental exposure to microplastics. Most importantly, our results indicated that necessary attention must be given to morphological features of realistic MPs when evaluating their risks to humans and the environment.


Assuntos
Exposição Dietética/estatística & dados numéricos , Contaminação de Alimentos/estatística & dados numéricos , Embalagem de Alimentos , Microplásticos/análise , Exposição Ambiental , Monitoramento Ambiental , Humanos , Plásticos/química
7.
Chemosphere ; 258: 127346, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32544815

RESUMO

Although biosynthesized nanoparticles are regarded as green products, research on their toxicity to aquatic food chains is scarce. Herein, biosynthesized silver nanoparticles (Alcea rosea-silver nanoparticles, AR-AgNPs) were produced by the reaction of Ag ions with leaf extract of herbal plant Alcea rosea. Then, the toxic effects of AR-AgNPs and their precursors such as Ag+ ions and coating agent (A. rosea leaf extract) on organisms of different trophic levels of a freshwater food chain were investigated. To the three studied aquatic organisms including phytoplankton (Chlorella vulgaris), zooplankton (Daphnia magna) and fish (Danio rerio), the coating agents of AR-AgNPs showed no toxic effects, and Ag+ ions were more toxic in comparison to AR-AgNPs. Further investigations revealed that the release of Ag+ ions from AR-AgNPs to the test media were not considerable due to the high stability of AR-AgNPs, thus the toxicity stemmed mainly from the particles of AR-AgNPs in all the three trophic levels. Based on values of 72-h EC50 for C. vulgaris, 48-h LC50 for D. magna and 96-h LC50 for D. rerio, the most sensitive organism to AR-AgNPs exposure was D. magna (the second trophic level).


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Chlorella vulgaris/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Água Doce , Dose Letal Mediana , Malvaceae/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA