Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 603(7899): 131-137, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197628

RESUMO

Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Processamento Alternativo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Códon sem Sentido , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único/genética
3.
Proc Natl Acad Sci U S A ; 119(26): e2118755119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749364

RESUMO

Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Transporte Vesicular , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Genes Dev ; 30(14): 1623-35, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474441

RESUMO

Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer.


Assuntos
Transformação Celular Neoplásica/patologia , Drosophila/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Elementos de DNA Transponíveis/genética , Drosophila/citologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Ovário/citologia , Transdução de Sinais/genética
5.
Proc Natl Acad Sci U S A ; 112(42): 12974-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438832

RESUMO

The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during Ras(V12) immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators.


Assuntos
Linhagem Celular Transformada , Drosophila/embriologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Embrião não Mamífero/citologia , Regiões Promotoras Genéticas , Proteína do Retinoblastoma/metabolismo , Transcrição Gênica
6.
RNA ; 19(8): 1064-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23788724

RESUMO

Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , RNA Interferente Pequeno/biossíntese , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Domínio Catalítico , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Glicerol-3-Fosfato O-Aciltransferase/genética , Masculino , Dados de Sequência Molecular , Mutação , Fosfolipídeos/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 108(50): 20172-7, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123973

RESUMO

RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.


Assuntos
Genoma Bacteriano/genética , Processamento Pós-Transcricional do RNA/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Staphylococcus aureus/genética , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Fases de Leitura Aberta/genética , RNA Antissenso/metabolismo , RNA Bacteriano/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie
8.
Nat Neurosci ; 26(1): 150-162, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36482247

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease affecting motor neurons in the brain and spinal cord. In this study, we investigated gene expression changes in ALS via RNA sequencing in 380 postmortem samples from cervical, thoracic and lumbar spinal cord segments from 154 individuals with ALS and 49 control individuals. We observed an increase in microglia and astrocyte gene expression, accompanied by a decrease in oligodendrocyte gene expression. By creating a gene co-expression network in the ALS samples, we identified several activated microglia modules that negatively correlate with retrospective disease duration. We mapped molecular quantitative trait loci and found several potential ALS risk loci that may act through gene expression or splicing in the spinal cord and assign putative cell types for FNBP1, ACSL5, SH3RF1 and NFASC. Finally, we outline how common genetic variants associated with splicing of C9orf72 act as proxies for the well-known repeat expansion, and we use the same mechanism to suggest ATXN3 as a putative risk gene.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Doenças Neurodegenerativas/metabolismo , Estudos Retrospectivos , Transcriptoma , Medula Espinal/metabolismo
9.
Proc Natl Acad Sci U S A ; 106(50): 21258-63, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19948966

RESUMO

A new class of small RNAs (endo-siRNAs) produced from endogenous double-stranded RNA (dsRNA) precursors was recently shown to mediate transposable element (TE) silencing in the Drosophila soma. These endo-siRNAs might play a role in heterochromatin formation, as has been shown in S. pombe for siRNAs derived from repetitive sequences in chromosome pericentromeres. To address this possibility, we used the viral suppressors of RNA silencing B2 and P19. These proteins normally counteract the RNAi host defense by blocking the biogenesis or activity of virus-derived siRNAs. We hypothesized that both proteins would similarly block endo-siRNA processing or function, thereby revealing the contribution of endo-siRNA to heterochromatin formation. Accordingly, P19 as well as a nuclear form of P19 expressed in Drosophila somatic cells were found to sequester TE-derived siRNAs whereas B2 predominantly bound their longer precursors. Strikingly, B2 or the nuclear form of P19, but not P19, suppressed silencing of heterochromatin gene markers in adult flies, and altered histone H3-K9 methylation as well as chromosomal distribution of histone methyl transferase Su(var)3-9 and Heterochromatin Protein 1 in larvae. Similar effects were observed in dcr2, r2d2, and ago2 mutants. Our findings provide evidence that a nuclear pool of TE-derived endo-siRNAs is involved in heterochromatin formation in somatic tissues in Drosophila.


Assuntos
Heterocromatina/metabolismo , RNA Interferente Pequeno/fisiologia , Animais , Animais Geneticamente Modificados , Cromossomos , Elementos de DNA Transponíveis/genética , Drosophila , Inativação Gênica , Marcadores Genéticos , Histonas/metabolismo , Metilação , RNA Interferente Pequeno/antagonistas & inibidores
10.
J Clin Invest ; 130(11): 6080-6092, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32790644

RESUMO

No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Estatmina/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Lobo Frontal/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Estatmina/genética
11.
Science ; 364(6435): 89-93, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948552

RESUMO

Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify pathway dynamics, distinguish regional differences between microglia and astrocyte populations at early time points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expressão Gênica , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/patologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Neuroglia/metabolismo , Neuroglia/patologia , Mudanças Depois da Morte , Análise Espaço-Temporal , Medula Espinal/patologia , Transcriptoma
12.
Cell Rep ; 29(5): 1164-1177.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665631

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo.


Assuntos
Esclerose Lateral Amiotrófica/classificação , Esclerose Lateral Amiotrófica/patologia , Córtex Cerebral/patologia , Neuroglia/patologia , Estresse Oxidativo , Mudanças Depois da Morte , Retroelementos/genética , Esclerose Lateral Amiotrófica/genética , Biomarcadores/metabolismo , Linhagem Celular , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Estresse Oxidativo/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
13.
Elife ; 72018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30003873

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA-binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Previously, we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al., 2016). Here, we show that this signature also occurs in half of 50 postmortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these 'like-C9' brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Ribonucleoproteínas Nucleares Heterogêneas/análise , Proteína de Ligação a Regiões Ricas em Polipirimidinas/análise , Splicing de RNA , Encéfalo/patologia , Proteínas de Ligação a DNA/análise , Humanos , Mutagênese Insercional
14.
PLoS Biol ; 2(11): e341, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502872

RESUMO

It has been proposed that dosage compensation in Drosophila males occurs by binding of two core proteins, MSL-1 and MSL-2, to a set of 35-40 X chromosome "entry sites" that serve to nucleate mature complexes, termed compensasomes, which then spread to neighboring sequences to double expression of most X-linked genes. Here we show that any piece of the X chromosome with which compensasomes are associated in wild-type displays a normal pattern of compensasome binding when inserted into an autosome, independently of the presence of an entry site. Furthermore, in chromosomal rearrangements in which a piece of X chromosome is inserted into an autosome, or a piece of autosome is translocated to the X chromosome, we do not observe spreading of compensasomes to regions of autosomes that have been juxtaposed to X chromosomal material. Taken together these results suggest that spreading is not involved in dosage compensation and that nothing distinguishes an entry site from the other X chromosome sites occupied by compensasomes beyond their relative affinities for compensasomes. We propose a new model in which the distribution of compensasomes along the X chromosome is achieved according to the hierarchical affinities of individual binding sites.


Assuntos
Mecanismo Genético de Compensação de Dose , Drosophila/genética , Cromossomo X/genética , Cromossomo X/ultraestrutura , Animais , Sítios de Ligação , Cromossomos/ultraestrutura , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Feminino , Genótipo , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Proteínas Nucleares/genética , Ligação Proteica , Fatores Sexuais , Fatores de Transcrição/genética , Translocação Genética
15.
Curr Protein Pept Sci ; 3(1): 143-51, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12370018

RESUMO

The amino acid selenocysteine represents the major biological form of selenium. Both the synthesis of selenocysteine and its co-translational incorporation into selenoproteins in response to an in-frame UGA codon, require a complex molecular machinery. To decode the UGA Sec codon in eubacteria, this machinery comprises the tRNASec, the specialized elongation factor SelB and the SECIS hairpin in the selenoprotein mRNAs. SelB conveys the Sec-tRNASec to the A site of the ribosome through binding to the SECIS mRNA hairpin adjacent to the UGA Sec codon. SelB is thus a bifunctional factor, carrying functional homology to elongation factor EF-Tu in its N-terminal domain and SECIS RNA binding activity via its C-terminal extension. In archaea and eukaryotes, selenocysteine incorporation exhibits a higher degree of complexity because the SECIS hairpin is localized in the 3' untranslated region of the mRNA. In the last couple of years, remarkable progress has been made toward understanding the underlying mechanism in mammals. Indeed, the discovery of the SECIS RNA binding protein SBP2, which is not a translation factor, paved the way for the subsequent isolation of mSelB/EFSec, the mammalian homolog of SelB. In contrast to the eubacterial SelB, the specialized elongation factor mSelB/EFSec the SECIS RNA binding function. The role is carried out by SBP2 that also forms a protein-protein complex with mSelB/EFSec. As a consequence, an important difference between the eubacterial and eukaryal selenoprotein synthesis machineries is that the functions of SelB are divided into two proteins in eukaryotes. Obviously, selenoprotein synthesis represents a higher degree of complexity than anticipated, and more needs to be discovered in eukaryotes. In this review, we will focus on the structural and functional aspects of the SelB and SBP2 factors in selenoprotein synthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Selenoproteínas
16.
Genetics ; 198(2): 647-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25081570

RESUMO

MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila.


Assuntos
Drosophila melanogaster/genética , Ecdisteroides/fisiologia , MicroRNAs/genética , Animais , Linhagem Celular , Drosophila melanogaster/metabolismo , Feminino , Genoma de Inseto , Tecido Linfoide/citologia , Masculino , MicroRNAs/metabolismo , Especificidade de Órgãos , Ovário/metabolismo , Interferência de RNA , Caracteres Sexuais , Processos de Determinação Sexual , Testículo/metabolismo , Ativação Transcricional , Transcriptoma
17.
EMBO Rep ; 9(2): 187-92, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18084186

RESUMO

Drosophila Gcn5 is the catalytic subunit of the SAGA and ATAC histone acetylase complexes. Here, we show that mutations in Gcn5 and the ATAC component Ada2a induce a decondensation of the male X chromosome, similar to that induced by mutations in the Iswi and Nurf301 subunits of the NURF nucleosome remodelling complex. Genetic studies as well as transcript profiling analysis indicate that ATAC and NURF regulate overlapping sets of target genes during development. In addition, we find that Ada2a chromosome binding and histone H4-Lys12 acetylation are compromised in Iswi and Nurf301 mutants. Our results strongly suggest that NURF is required for ATAC to access the chromatin and to regulate global chromosome organization.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/metabolismo , Cromossomo X/metabolismo , Acetilação , Adenosina Trifosfatases/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Genes de Insetos , Larva , Masculino , Mutação/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA