Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 121(5): 909-926, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29293866

RESUMO

Background and Aims: Enhancement of light harvesting in annual crops has successfully led to yield increases since the green revolution. Such an improvement has mainly been achieved by selecting plants with optimal canopy architecture for specific agronomic practices. For perennials such as oil palm, breeding programmes were focused more on fruit yield, but now aim at exploring more complex traits. The aim of the present study is to investigate potential improvements in light interception and carbon assimilation in the study case of oil palm, by manipulating leaf traits and proposing architectural ideotypes. Methods: Sensitivity analyses (Morris method and metamodel) were performed on a functional-structural plant model recently developed for oil palm which takes into account genetic variability, in order to virtually assess the impact of plant architecture on light interception efficiency and potential carbon acquisition. Key Results: The most sensitive parameters found over plant development were those related to leaf area (rachis length, number of leaflets, leaflet morphology), although fine attributes related to leaf geometry showed increasing influence when the canopy became closed. In adult stands, optimized carbon assimilation was estimated on plants with a leaf area index between 3.2 and 5.5 m2 m-2 (corresponding to usual agronomic conditions), with erect leaves, short rachis and petiole, and high number of leaflets on the rachis. Four architectural ideotypes for carbon assimilation are proposed based on specific combinations of organ dimensions and arrangement that limit mutual shading and optimize light distribution within the plant crown. Conclusions: A rapid set-up of leaf area is critical at young age to optimize light interception and subsequently carbon acquisition. At the adult stage, optimization of carbon assimilation could be achieved through specific combinations of architectural traits. The proposition of multiple morphotypes with comparable level of carbon assimilation opens the way to further investigate ideotypes carrying an optimal trade-off between carbon assimilation, plant transpiration and biomass partitioning.


Assuntos
Arecaceae/anatomia & histologia , Carbono/metabolismo , Folhas de Planta/anatomia & histologia , Arecaceae/crescimento & desenvolvimento , Arecaceae/fisiologia , Arecaceae/efeitos da radiação , Sequestro de Carbono , Luz , Modelos Biológicos , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
2.
Plant Cell Environ ; 40(9): 1926-1939, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28626887

RESUMO

Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, that is, ideal values of a set of plant traits, resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of performance criteria (e.g. yield and light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modelling approach, which identified paths for desirable trait modification, including direction and intensity.


Assuntos
Helianthus/fisiologia , Malus/fisiologia , Modelos Biológicos , Análise Numérica Assistida por Computador , Estudos de Viabilidade , Fenótipo
3.
Ann Bot ; 114(4): 739-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24723446

RESUMO

BACKGROUND AND AIMS: The impact of a fruit tree's architecture on its performance is still under debate, especially with regard to the definition of varietal ideotypes and the selection of architectural traits in breeding programmes. This study aimed at providing proof that a modelling approach can contribute to this debate, by using in silico exploration of different combinations of traits and their consequences on light interception, here considered as one of the key parameters to optimize fruit tree production. METHODS: The variability of organ geometrical traits, previously described in a bi-parental population, was used to simulate 1- to 5-year-old apple trees (Malus × domestica). Branching sequences along trunks observed during the first year of growth of the same hybrid trees were used to initiate the simulations, and hidden semi-Markov chains previously parameterized were used in subsequent years. Tree total leaf area (TLA) and silhouette to total area ratio (STAR) values were estimated, and a sensitivity analysis was performed, based on a metamodelling approach and a generalized additive model (GAM), to analyse the relative impact of organ geometry and lateral shoot types on STAR. KEY RESULTS: A larger increase over years in TLA mean and variance was generated by varying branching along trunks than by varying organ geometry, whereas the inverse was observed for STAR, where mean values stabilized from year 3 to year 5. The internode length and leaf area had the highest impact on STAR, whereas long sylleptic shoots had a more significant effect than proleptic shoots. Although the GAM did not account for interactions, the additive effects of the geometrical factors explained >90% of STAR variation, but much less in the case of branching factors. CONCLUSIONS: This study demonstrates that the proposed modelling approach could contribute to screening architectural traits and their relative impact on tree performance, here viewed through light interception. Even though trait combinations and antagonism will need further investigation, the approach opens up new perspectives for breeding and genetic selection to be assisted by varietal ideotype definition.


Assuntos
Malus/anatomia & histologia , Modelos Biológicos , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/efeitos da radiação , Luz , Malus/crescimento & desenvolvimento , Malus/efeitos da radiação , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Árvores
4.
Plant Dis ; 96(7): 935-942, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30727206

RESUMO

The Shtienberg model for predicting yield loss caused by Phytophthora infestans in potato was developed and parameterized in the 1990s in North America. The predictive quality of this model was evaluated in France for a wide range of epidemics under different soil and weather conditions and on cultivars different than those used to estimate its parameters. A field experiment was carried out in 2006, 2007, 2008, and 2009 in Brittany, western France to assess late blight severity and yield losses. The dynamics of late blight were monitored on eight cultivars with varying types and levels of resistance. The model correctly predicted relative yield losses (efficiency = 0.80, root mean square error of prediction = 13.25%, and bias = -0.36%) as a function of weather and the observed disease dynamics for a wide range of late blight epidemics. In addition to the evaluation of the predictive quality of the model, this article provides a dataset that describes the development of various late blight epidemics on potato as a function of weather conditions, fungicide regimes, and cultivar susceptibility. Following this evaluation, the Shtienberg model can be used with confidence in research and development programs to better manage potato late blight in France.

5.
PLoS One ; 11(1): e0146385, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799483

RESUMO

A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.


Assuntos
Adaptação Fisiológica/fisiologia , Simulação por Computador , Produtos Agrícolas/fisiologia , Modelos Biológicos , Característica Quantitativa Herdável , Triticum/fisiologia , Adaptação Fisiológica/genética , Austrália , Biologia Computacional , Produtos Agrícolas/genética , Secas , Ecossistema , Chuva , Triticum/genética
6.
PLoS One ; 7(11): e49406, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226209

RESUMO

In a context of pesticide use reduction, alternatives to chemical-based crop protection strategies are needed to control diseases. Crop and plant architectures can be viewed as levers to control disease outbreaks by affecting microclimate within the canopy or pathogen transmission between plants. Modeling and simulation is a key approach to help analyze the behaviour of such systems where direct observations are difficult and tedious. Modeling permits the joining of concepts from ecophysiology and epidemiology to define structures and functions generic enough to describe a wide range of epidemiological dynamics. Additionally, this conception should minimize computing time by both limiting the complexity and setting an efficient software implementation. In this paper, our aim was to present a model that suited these constraints so it could first be used as a research and teaching tool to promote discussions about epidemic management in cropping systems. The system was modelled as a combination of individual hosts (population of plants or organs) and infectious agents (pathogens) whose contacts are restricted through a network of connections. The system dynamics were described at an individual scale. Additional attention was given to the identification of generic properties of host-pathogen systems to widen the model's applicability domain. Two specific pathosystems with contrasted crop architectures were considered: ascochyta blight on pea (homogeneously layered canopy) and potato late blight (lattice of individualized plants). The model behavior was assessed by simulation and sensitivity analysis and these results were discussed against the model ability to discriminate between the defined types of epidemics. Crop traits related to disease avoidance resulting in a low exposure, a slow dispersal or a de-synchronization of plant and pathogen cycles were shown to strongly impact the disease severity at the crop scale.


Assuntos
Modelos Biológicos , Pisum sativum/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Ar , Ascomicetos/fisiologia , Simulação por Computador , Interações Hospedeiro-Patógeno , Modelos Estruturais , Pisum sativum/imunologia , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA