Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(13): 3364-3369, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292902

RESUMO

According to electronic structure theory, bilayer graphene is expected to have anomalous electronic properties when it has long-period moiré patterns produced by small misalignments between its individual layer honeycomb lattices. We have realized bilayer graphene moiré crystals with accurately controlled twist angles smaller than 1° and studied their properties using scanning probe microscopy and electron transport. We observe conductivity minima at charge neutrality, satellite gaps that appear at anomalous carrier densities for twist angles smaller than 1°, and tunneling densities-of-states that are strongly dependent on carrier density. These features are robust up to large transverse electric fields. In perpendicular magnetic fields, we observe the emergence of a Hofstadter butterfly in the energy spectrum, with fourfold degenerate Landau levels, and broken symmetry quantum Hall states at filling factors ±1, 2, 3. These observations demonstrate that at small twist angles, the electronic properties of bilayer graphene moiré crystals are strongly altered by electron-electron interactions.

2.
Phys Rev Lett ; 120(10): 107703, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570322

RESUMO

We present a combined experimental and theoretical study of valley populations in the valence bands of trilayer WSe_{2}. Shubnikov-de Haas oscillations show that trilayer holes populate two distinct subbands associated with the K and Γ valleys, with effective masses 0.5m_{e} and 1.2m_{e}, respectively; m_{e} is the bare electron mass. At a fixed total hole density, an applied transverse electric field transfers holes from Γ orbitals to K orbitals. We are able to explain this behavior in terms of the larger layer polarizability of the K orbital subband.

3.
Nano Lett ; 17(6): 3919-3925, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28557462

RESUMO

We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 and 2.5 µA/µm2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

4.
Phys Rev Lett ; 118(24): 247701, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665633

RESUMO

We report a study of the quantum Hall states (QHS) of holes in mono- and bilayer WSe_{2}. The QHS sequence transitions between predominantly even and predominantly odd filling factors as the hole density is tuned in the range 1.6-12×10^{12} cm^{-2}. Measurements in tilted magnetic fields reveal an insensitivity of the QHS to the in-plane magnetic field, evincing that the hole spin is locked perpendicular to the WSe_{2} plane. Furthermore, the QHS sequence is insensitive to an applied electric field. These observations imply that the QHS sequence is controlled by the Zeeman-to-cyclotron energy ratio, which remains constant as a function of perpendicular magnetic field at a fixed carrier density, but changes as a function of density due to strong electron-electron interaction.

5.
Nano Lett ; 16(6): 3607-15, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27152557

RESUMO

Strong interaction of graphene with light accounts for one of its most remarkable properties: the ability to absorb 2.3% of the incident light's energy within a single atomic layer. Free carrier injection via field-effect gating can dramatically vary the optical properties of graphene, thereby enabling fast graphene-based modulators of the light intensity. However, the very thinness of graphene makes it difficult to modulate the other fundamental property of the light wave: its optical phase. Here we demonstrate that considerable phase control can be achieved by integrating a single-layer graphene (SLG) with a resonant plasmonic metasurface that contains nanoscale gaps. By concentrating the light intensity inside of the nanogaps, the metasurface dramatically increases the coupling of light to the SLG and enables control of the phase of the reflected mid-infrared light by as much as 55° via field-effect gating. We experimentally demonstrate graphene-based phase modulators that maintain the amplitude of the reflected light essentially constant over most of the phase tuning range. Rapid nonmechanical phase modulation enables a new experimental technique, graphene-based laser interferometry, which we use to demonstrate motion detection with nanoscale precision. We also demonstrate that by the judicious choice of a strongly anisotropic metasurface the graphene-controlled phase shift of light can be rendered polarization-dependent. Using the experimentally measured phases for the two orthogonal polarizations, we demonstrate that the polarization state of the reflected light can be by modulated by carrier injection into the SLG. These results pave the way for novel high-speed graphene-based optical devices and sensors such as polarimeters, ellipsometers, and frequency modulators.

6.
Nano Lett ; 16(3): 1989-95, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26859527

RESUMO

We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

7.
Phys Rev Lett ; 116(8): 086601, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967432

RESUMO

We study the magnetotransport properties of high-mobility holes in monolayer and bilayer WSe_{2}, which display well defined Shubnikov-de Haas (SdH) oscillations, and quantum Hall states in high magnetic fields. In both mono- and bilayer WSe_{2}, the SdH oscillations and the quantum Hall states occur predominantly at even filling factors, evincing a twofold Landau level degeneracy. The Fourier transform analysis of the SdH oscillations in bilayer WSe_{2} reveals the presence of two subbands localized in the top or the bottom layer, as well as negative compressibility. From the temperature dependence of the SdH oscillations we determine a hole effective mass of 0.45m_{0} for both mono- and bilayer WSe_{2}.

8.
Nano Lett ; 15(1): 428-33, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25436861

RESUMO

We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

9.
Nano Lett ; 14(4): 2039-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611616

RESUMO

We use electron transport to characterize monolayer graphene-multilayer MoS2 heterostructures. Our samples show ambipolar characteristics and conductivity saturation on the electron branch that signals the onset of MoS2 conduction band population. Surprisingly, the carrier density in graphene decreases with gate bias once MoS2 is populated, demonstrating negative compressibility in MoS2. We are able to interpret our measurements quantitatively by accounting for disorder and using the random phase approximation (RPA) for the exchange and correlation energies of both Dirac and parabolic-band two-dimensional electron gases. This interpretation allows us to extract the energetic offset between the conduction band edge of MoS2 and the Dirac point of graphene.

11.
Opt Express ; 18 Suppl 4: A568-74, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21165090

RESUMO

We have developed an inexpensive and scalable method to create wire textures on multi-crystalline Si solar cell surfaces for enhanced light trapping. The wires are created by reactive ion etching, using a monolayer high self-assembled array of polymer microspheres as an etch mask. Chemical functionalization of the microspheres and the Si surface allows the mask to be assembled by simple dispensing, without spin or squeegee based techniques. Surface reflectivities of the resulting wire textured multi-crystalline solar cells were comparable to that of KOH etched single crystal Si (100). Electrically, the solar cells exhibited a 20% gain in the short circuit current compared to planar multicrystalline Si control devices, and a relative increase of 7-16% in the "pseudo" efficiencies when the series resistance contributions are extracted out.

12.
ACS Nano ; 11(5): 4832-4839, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28414214

RESUMO

Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

13.
ACS Nano ; 9(10): 10402-10, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26343531

RESUMO

We demonstrate dual-gated p-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe2) using high work-function platinum source/drain contacts and a hexagonal boron nitride top-gate dielectric. A device topology with contacts underneath the WSe2 results in p-FETs with ION/IOFF ratios exceeding 10(7) and contacts that remain ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm(2)/(V s) at room temperature and approaching 4000 cm(2)/(V s) at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering or defects.

14.
ACS Nano ; 9(4): 4527-32, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25768037

RESUMO

Using different types of WSe2 and graphene-based heterostructures, we experimentally determine the offset between the graphene neutrality point and the WSe2 conduction and valence band edges, as well as the WSe2 dielectric constant along the c-axis. In a first heterostructure, consisting of WSe2-on-graphene, we use the WSe2 layer as the top dielectric in dual-gated graphene field-effect transistors to determine the WSe2 capacitance as a function of thickness, and the WSe2 dielectric constant along the c-axis. In a second heterostructure consisting of graphene-on-WSe2, the lateral electron transport shows ambipolar behavior characteristic of graphene combined with a conductivity saturation at sufficiently high positive (negative) gate bias, associated with carrier population of the conduction (valence) band in WSe2. By combining the experimental results from both heterostructures, we determine the band offset between the graphene charge neutrality point, and the WSe2 conduction and valence band edges.

15.
Science ; 345(6192): 58-61, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24994645

RESUMO

Bilayer graphene has a distinctive electronic structure influenced by a complex interplay between various degrees of freedom. We probed its chemical potential using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric. The chemical potential has a nonlinear carrier density dependence and bears signatures of electron-electron interactions. The data allowed a direct measurement of the electric field-induced bandgap at zero magnetic field, the orbital Landau level (LL) energies, and the broken-symmetry quantum Hall state gaps at high magnetic fields. We observe spin-to-valley polarized transitions for all half-filled LLs, as well as emerging phases at filling factors ν = 0 and ν = ±2. Furthermore, the data reveal interaction-driven negative compressibility and electron-hole asymmetry in N = 0, 1 LLs.

16.
Science ; 342(6159): 720-3, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24158906

RESUMO

The growth of high-quality single crystals of graphene by chemical vapor deposition on copper (Cu) has not always achieved control over domain size and morphology, and the results vary from lab to lab under presumably similar growth conditions. We discovered that oxygen (O) on the Cu surface substantially decreased the graphene nucleation density by passivating Cu surface active sites. Control of surface O enabled repeatable growth of centimeter-scale single-crystal graphene domains. Oxygen also accelerated graphene domain growth and shifted the growth kinetics from edge-attachment-limited to diffusion-limited. Correspondingly, the compact graphene domain shapes became dendritic. The electrical quality of the graphene films was equivalent to that of mechanically exfoliated graphene, in spite of being grown in the presence of O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA