Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(13): e202300158, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36740576

RESUMO

Fast and continuous ion insertion is blocked in the common electrodes operating with widely accepted single-ion storage mechanism, primarily due to Coulomb repulsion between the same ions. It results in an irreconcilable conflict between capacity and rate performance. Herein, we designed a porous organic framework with novel multiple-ion co-storage modes, including PF6 - /Li+ , OTF- /Mg2+ , and OTF- /Zn2+ co-storage. The Coulomb interactions between cationic and anionic carriers in the framework can significantly promote electrode kinetics, by rejuvenating fast ion carrier migration toward framework interior. Consequently, the framework via PF6 - /Li+ co-storage mode shows a high energy density of 878 Wh kg-1 cycled more than 20 000 cycles, with an excellent power density of 28 kW kg-1 that is already comparable to commercial supercapacitors. The both greatly improved energy and power densities via the co-storage mode may pave a way for exploring new electrodes that are not available from common single-ion electrodes.

2.
Angew Chem Int Ed Engl ; 62(11): e202218970, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688728

RESUMO

Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 µm Li||4.5 mAh cm-2 lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs.

3.
Angew Chem Int Ed Engl ; 62(26): e202300372, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37088712

RESUMO

Rechargeable batteries based on multivalent cation (Mvn+ , n>1) carriers are considered potentially low-cost alternatives to lithium-ion batteries. However, the high charge-density Mvn+ carriers generally lead to sluggish kinetics and poor structural stability in cathode materials. Herein, we report an Mvn+ storage via intercalation pseudocapacitance mechanism in a 2D bivalve-like organic framework featured with localized ligands. By switching from conventional intercalation to localized ligand-assisted-intercalation pseudocapacitance, the organic cathode exhibits unprecedented fast kinetics with little structural change upon intercalation. It thus enables an excellent power density of 57 kW kg-1 over 20000 cycles for Ca2+ storage and a power density of 14 kW kg-1 with a long cycling life over 45000 cycles for Zn2+ storage. This work may provide a largely unexploited route toward constructing a local dynamic coordination microstructure for ultrafast Mvn+ storage.


Assuntos
Fontes de Energia Elétrica , Ligantes , Cátions , Eletrodos , Cinética
4.
Angew Chem Int Ed Engl ; 61(24): e202204256, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35334135

RESUMO

Employing pure water, the ultimate green source of hydrogen donor to initiate chemical reactions that involve a hydrogen atom transfer (HAT) step is fascinating but challenging due to its large H-O bond dissociation energy (BDEH-O =5.1 eV). Many approaches have been explored to stimulate water for hydrogenative reactions, but the efficiency and productivity still require significant enhancement. Here, we show that the surface hydroxylated graphitic carbon nitride (gCN-OH) only requires 2.25 eV to activate H-O bonds in water, enabling abstraction of hydrogen atoms via dehydrogenation of pure water into hydrogen peroxide under visible light irradiation. The gCN-OH presents a stable catalytic performance for hydrogenative N-N coupling, pinacol-type coupling and dehalogenative C-C coupling, all with high yield and efficiency, even under solar radiation, featuring extensive impacts in using renewable energy for a cleaner process in dye, electronic, and pharmaceutical industries.

5.
Org Lett ; 25(1): 179-183, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36573758

RESUMO

An efficient formal nitrene insertion reaction into the ß-vinyl C-H bond of acroleins with an electron-rich organic azide was developed. The reaction protocol can produce secondary enaminals in high yield with a broad substrate scope. In the reaction, acid mediated [3 + 2] cycloaddition of organic azides with an acrolein generated intermediate protonated triazolines, which were selectively decomposed into enaminals with addition of a weakly Brønsted basic reagent such as methanol. The resulting secondary enaminal could be easily reduced into a γ-amino alcohol under mild hydrogenation conditions.

6.
Nanomicro Lett ; 13(1): 111, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-34138358

RESUMO

Lithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density. However, it suffers from poor cycling stability because of its high reactivity with liquid electrolytes. Therefore, continuous efforts have been put into improving the cycling Coulombic efficiency (CE) to extend the lifespan of the lithium metal negative electrode. Herein, we report that using dual-salt additives of LiPF6 and LiNO3 in an ether solvent-based electrolyte can significantly improve the cycling stability and rate capability of a Li-carbon (Li-CNT) composite. As a result, an average cycling CE as high as 99.30% was obtained for the Li-CNT at a current density of 2.5 mA cm-2 and an negative electrode to positive electrode capacity (N/P) ratio of 2. The cycling stability and rate capability enhancement of the Li-CNT negative electrode could be attributed to the formation of a better solid electrolyte interphase layer that contains both inorganic components and organic polyether. The former component mainly originates from the decomposition of the LiNO3 additive, while the latter comes from the LiPF6-induced ring-opening polymerization of the ether solvent. This novel surface chemistry significantly improves the CE of Li negative electrode, revealing its importance for the practical application of lithium metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA