Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 33(9): 1609-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24791954

RESUMO

Autophagy is a highly conserved mechanism of eukaryotic cells implicated in cell homeostasis and elimination of intracellular pathogens. Functional polymorphisms in genes encoding for autophagy have been associated with susceptibility to inflammatory and infectious diseases, but data on severe infections are missing. The aim of the present study was to assess whether polymorphisms in genes encoding proteins involved in autophagy influence susceptibility to ventilator-associated pneumonia (VAP). Mechanically ventilated patients with VAP were studied. Genotyping for autophagy-related 16-like 1 (ATG16L1, rs2241880) functional polymorphism was performed using the TaqMan single-nucleotide assay. Monocytes were isolated from patients and stimulated with lipopolysaccharide (LPS). Tumor necrosis factor-α (TNF-α) was measured in the supernatants of monocytes using an enzyme-linked immunosorbent assay. Procalcitonin (PCT) was also measured in the serum of patients by an immuno-time-resolved amplified cryptate technology assay. A total of 155 patients with VAP were enrolled in the study. Carriage of the minor A allele of ATG16L1 was associated with septic shock with at least one organ failure (odds ratio (OR): 2.40, p: 0.036). TNF-α production was significantly greater among the carriers of the polymorphism presenting with at least one organ failure (p: 0.040). PCT was increased upon worsening to septic shock and organ failure only among carriers of the minor frequency A alleles. In a homogeneous cohort of septic patients with VAP, the carriage of autophagy polymorphisms predisposes to VAP severity and septic shock development. This may be related with predisposition to immunoparalysis.


Assuntos
Proteínas de Transporte/genética , Predisposição Genética para Doença , Pneumonia Associada à Ventilação Mecânica/patologia , Polimorfismo Genético , Sepse/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Relacionadas à Autofagia , Calcitonina/sangue , Peptídeo Relacionado com Gene de Calcitonina , Feminino , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas/sangue , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
2.
Chemosphere ; 250: 126170, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32114335

RESUMO

Cellulose nanocrystals (CNC), also known as nanowhiskers, have recently gained much attention due to their biodegradable nature, advantageous chemical and mechanical properties, economic value and renewability thus making them attractive for a wide range of applications. However, before these materials can be considered for potential uses, investigation of their toxicity is prudent. Although CNC exposures are associated with pulmonary inflammation and damage as well as oxidative stress responses and genotoxicity in vivo, studies evaluating cell transformation or tumorigenic potential of CNC's were not previously conducted. In this study, we aimed to assess the neoplastic-like transformation potential of two forms of CNC derived from wood (powder and gel) in human pulmonary epithelial cells (BEAS-2B) in comparison to fibrous tremolite (TF), known to induce lung cancer. Short-term exposure to CNC or TF induced intracellular ROS increase and DNA damage while long-term exposure resulted in neoplastic-like transformation demonstrated by increased cell proliferation, anchorage-independent growth, migration and invasion. The increased proliferative responses were also in-agreement with observed levels of pro-inflammatory cytokines. Based on the hierarchical clustering analysis (HCA) of the inflammatory cytokine responses, CNC powder was segregated from the control and CNC-gel samples. This suggests that CNC may have the ability to influence neoplastic-like transformation events in pulmonary epithelial cells and that such effects are dependent on the type/form of CNC. Further studies focusing on determining and understanding molecular mechanisms underlying potential CNC cell transformation events and their likelihood to induce tumorigenic effects in vivo are highly warranted.


Assuntos
Celulose/toxicidade , Nanopartículas/toxicidade , Celulose/química , Células Epiteliais/efeitos dos fármacos , Humanos , Estudos Longitudinais , Pulmão/efeitos dos fármacos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Testes de Toxicidade Crônica , Madeira
3.
Stud Health Technol Inform ; 142: 233-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19377157

RESUMO

The Veress needle is the most commonly used technique for creating the pneumoperitoneum at the start of a laparoscopic surgical procedure. Inserting the Veress needle correctly is crucial since errors can cause significant harm to patients. Unfortunately, this technique can be difficult to teach since surgeons rely heavily on tactile feedback while advancing the needle through the various layers of the abdominal wall. This critical step in laparoscopy, therefore, can be challenging for novice trainees to learn without adequate opportunities to practice in a safe environment with no risk of injury to patients. To address this issue, we have successfully developed a prototype of a virtual reality haptic needle insertion simulator using the tactile feedback of 22 surgeons to set realistic haptic parameters. A survey of these surgeons concluded that our device appeared and felt realistic, and could potentially be a useful tool for teaching the proper technique of Veress needle insertion.


Assuntos
Competência Clínica , Simulação por Computador , Agulhas , Punções , Procedimentos Cirúrgicos Operatórios/educação , Tato , Interface Usuário-Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA