Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833481

RESUMO

In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Hipotálamo , MicroRNAs , Obesidade Materna , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Obesidade/metabolismo , Obesidade/genética , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética
2.
J Bioenerg Biomembr ; 54(5-6): 227-239, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070071

RESUMO

The P2X7 receptor (P2X7R) is an ion channel that promotes the passage of ions through the membrane through brief stimulation once activated by ATP, its endogenous opener. However, prolonged stimulation with ATP, which occurs in pathological processes, opens a nonselective pore in the plasma membrane, allowing the passage of large molecules and leading to cytokine release or even cell death. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Considering the booming of biomass upgrading reactions in recent years and the continued efforts to synthesize biologically active molecules containing the 1,2,3-triazole ring, in the present work, we aimed to investigate whether triazole-linked menadione-furan derivatives could present P2X7R inhibitory activity. The novel compounds were tested for their inhibitory activity on ATP-induced dye uptake in peritoneal macrophages. Some have shown promising results, having displayed IC50 values lower than that of the P2X7R inhibitor BBG. Molecular docking studies also indicated that the active compounds bind to an allosteric site on P2X7R, presenting potential P2X7R inhibition.


Assuntos
Triazóis , Vitamina K 3 , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Trifosfato de Adenosina/farmacologia , Furanos/farmacologia , Receptores Purinérgicos P2X7 , Antagonistas do Receptor Purinérgico P2X/farmacologia
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142897

RESUMO

The intestinal epithelium is a principal site for environmental agents' detection. Several inflammation- and stress-related signalling pathways have been identified as key players in these processes. However, it is still unclear how the chronic intake of inadequate nutrients triggers inflammatory signalling pathways in different intestinal regions. We aimed to evaluate the impact of unhealthy dietary patterns, starting at a younger age, and the association with metabolic dysfunction, intestinal inflammatory response, and obesity in adulthood. A rat model was used to evaluate the effects of the consumption of sugary beverages (HSD) and a Western diet (WD), composed of ultra-processed foods. Both diets showed a positive correlation with adiposity index, but a positive correlation was found between the HSD diet and the levels of blood glucose and triglycerides, whereas the WD diet correlated positively with triglyceride levels. Moreover, a distinct inflammatory response was associated with either the WD or HSD diets. The WD induced an increase in TLR2, TLR4, and nuclear factor-kappa B (NF-κB) intestinal gene expression, with higher levels in the colon and overexpression of the inducible nitric oxide synthase. In turn, the HSD diet induced activation of the TLR2-mediated NF-κB signalling pathway in the small intestine. Altogether, these findings support the concept that early intake of unhealthy foods and nutrients are a main exogenous signal for disturbances of intestinal immune mechanisms and in a region-specific manner, ultimately leading to obesity-related disorders in later life.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Animais , Glicemia , Dieta Ocidental , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade , Ratos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Triglicerídeos
4.
Am J Orthod Dentofacial Orthop ; 162(4): e203-e215, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35999156

RESUMO

INTRODUCTION: The objective of this study was to evaluate the effects of the torqued cantilever (TC) and conventional tip-back cantilever (CC) made of stainless steel (SS) and titanium-molybdenum alloy (TMA) on the uprighting of mesially impacted mandibular molars using three-dimensional finite element analysis. METHODS: The 3-dimensional mandibular model included part of the mandible with mesially tipped and impacted mandibular second molar, periodontal ligament (PDL), molar tube, mini-implant, and cantilevers. Four finite element method models (TC-SS, TC-TMA, CC-SS, and CC-TMA) were created to simulate different skeletally anchored uprighting mechanics. CC mechanics involved a known 0.019 × 0.025-in helical cantilever acting on a buccal molar tube. TC mechanics included a 0.019 × 0.025-in cantilever capable of producing mesial root torque by acting on a tube positioned on the molar disto-occlusal surface with the slot in a buccolingual direction. Three-dimensional molar displacement and stress distribution on the molar PDL were recorded. RESULTS: The SS cantilever produced almost twice as much molar displacement as the TMA. TC mechanics showed more evident mesial displacement of the molar root apexes. CC mechanics had greater molar rotation. TC uprighting moment produced greater molar mesial extrusion and greater intrusion of the distal root apex. The dual deflection system of the TC mechanics induced the lowest stress on the PDL, regardless of the metallic alloy. CONCLUSIONS: TC delivered a more efficient uprighting moment to the molar with less unwanted tooth movement and stress on the PDL and a more accessible site for bonding the molar tube.


Assuntos
Aço Inoxidável , Dente Impactado , Análise de Elementos Finitos , Humanos , Mandíbula , Dente Molar , Molibdênio , Titânio , Técnicas de Movimentação Dentária/métodos , Dente Impactado/diagnóstico por imagem , Dente Impactado/terapia , Torque
5.
Diabetologia ; 64(4): 890-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33501603

RESUMO

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Proteínas de Homeodomínio/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade Materna/genética , Obesidade Materna/patologia , Fenótipo , Gravidez , Transdução de Sinais
6.
Am J Orthod Dentofacial Orthop ; 159(1): e7-e16, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234459

RESUMO

INTRODUCTION: To evaluate the influence of compensatory tipping of maxillary and mandibular incisors on the anterior arch length ratio and canine relationship in skeletal Class II malocclusion. METHODS: The study was based on posttreatment lateral head films and dental casts of 88 patients. The sample was divided into a Class II malocclusion group (32 patients; ANB ≥5° and mean [± standard deviation] age, 20.82 ± 7.67 years) and a Class I malocclusion group (56 patients; 1° ≤ ANB ≤ 2.5° and mean [± standard deviation] age, 19.20 ± 5.04 years). Measurements obtained for anterior arch length and width, Bolton discrepancy, canine relationship, growth pattern, and incisor position were compared between the groups. The canine relationship was correlated with dental and skeletal variables (P <0.05). RESULTS: The mean ANB angles were 6.21° and 1.78° for the Class II and Class I malocclusion groups, respectively. The skeletal Class II group presented significantly larger mandibular anterior arch length, producing an unbalanced anterior arch length ratio. The canine relationship was more displaced toward Class II in this group. Anterior arch length ratio was the most influential variable in the canine relationship. The mandibular incisors had a higher compensation degree than the maxillary incisors. The groups were similar regarding overjet, overbite, and growth pattern. CONCLUSIONS: Class II malocclusion camouflage treatment with excessive proclination of the mandibular incisors was associated with an increase in mandibular arch length, negatively influencing the anterior arch length ratio and the final canine relationship. Mandibular anterior arch length reduction by interproximal stripping may be necessary in moderate to severe skeletal Class II malocclusion orthodontic treatment.


Assuntos
Má Oclusão Classe II de Angle , Sobremordida , Adolescente , Adulto , Cefalometria , Arco Dental , Humanos , Má Oclusão Classe II de Angle/terapia , Mandíbula , Maxila , Dente Molar , Adulto Jovem
7.
Bioorg Chem ; 104: 104278, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33010623

RESUMO

Extracellular ATP activates purinergic receptors such as P2X7, cationic channels for Ca2+, K+, and Na+. There is robust evidence of the involvement of these receptors in the immune response, so P2X7 receptors (P2X7R) are considered a potential therapeutic target for the development of anti-inflammatory drugs. Although there are many studies of the anti-inflammatory properties of naphthoquinones, these molecules have not yet been explored as P2X7 antagonists. In previous work, our group prepared 3-substituted (halogen or aryl) 2-hydroxy-1,4-naphthoquinones and studied their action on P2X7R. In this paper, eight 2-amino-3-aryl-1,4-naphthoquinones were evaluated to identify the inhibitory activity on P2X7R and the toxicological profile. Three analogues (AD-4CN, AD-4Me, and AD-4F) exhibited reduced toxicity for mammalian cells with CC50 values higher than 500 µM. These three 3-substituted 2-amino-1,4-naphthoquinones inhibited murine P2X7R (mP2X7R) in vitro. However, the analogues AD-4CN and AD-4Me showed low selectivity index values. AD-4F inhibited both mP2X7R and human P2X7R (hP2X7R) with IC50 values of 0.123 and 0.93 µM, respectively. Additionally, this analogue exhibited higher potency than BBG at inhibiting the ATP-induced release of IL-1ß in vitro. Carrageenan-induced paw edema in vivo was reversed for AD-4F with an ID50 value of 11.51 ng/kg. Although AD-4F was less potent than previous 3-substituted (halogen or aryl) 2-hydroxy-1,4-naphthoquinones such as AN-04in vitro, this 3-substituted 2-amino-1,4-naphthoquinone revealed higher potency in vivo to reduce the edematogenic response. In silico analysis suggests that the binding site of the novel 2-amino-3-aryl-1,4-naphthoquinone derivatives, including all the tautomeric forms, is located in the pore area of the hP2X7R model. Based on these results, we considered AD-4F to be a satisfactory P2X7R inhibitor. AD-4F might be used as a scaffold structure to design a novel series of inhibitors with potential inhibitory activity on murine (mP2X7R) and human (hP2X7R) P2X7 receptors.


Assuntos
Naftoquinonas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina , Animais , Células CACO-2 , Carragenina , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Células HEK293 , Humanos , Masculino , Camundongos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Relação Estrutura-Atividade
8.
Adv Exp Med Biol ; 974: 289-298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353248

RESUMO

Stable isotope labelling by amino acids in cell culture (SILAC) is a technique that allows proteomic profiling of cells. In this chapter we describe a protocol for the identification and quantification of newly synthesised proteins. The methodology can be applied to any cultured cell system with relevance to schizophrenia, affective disorders and autism spectrum conditions including those addressing responses to pharmacological stimuli.


Assuntos
Marcação por Isótopo/métodos , Transtornos Mentais/metabolismo , Proteínas do Tecido Nervoso/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Isótopos de Carbono , Fracionamento Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Lisina/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Isótopos de Nitrogênio , Fragmentos de Peptídeos/análise
9.
Drug Metab Rev ; 48(4): 577-592, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27580162

RESUMO

Tramadol and tapentadol are centrally acting, synthetic opioid analgesics used in the treatment of moderate to severe pain. Main metabolic patterns for these drugs in humans are well characterized. Tramadol is mainly metabolized by cytochrome P450 CYP2D6 to O-desmethyltramadol (M1), its main active metabolite. M1 and tapentadol undergo mainly glucuronidation reactions. On the other hand, the pharmacokinetics of tramadol and tapentadol are dependent on multiple factors, such as the route of administration, genetic variability in pharmacokinetic components and concurrent consumption of other drugs. This review aims to comparatively discuss the metabolomics of tramadol and tapentadol, namely by presenting all their known metabolites. An exhaustive literature search was performed using textual and structural queries for tramadol and tapentadol, and associated known metabolizing enzymes and metabolites. A thorough knowledge about tramadol and tapentadol metabolomics is expected to provide additional insights to better understand the interindividual variability in their pharmacokinetics and dose-responsiveness, and contribute to the establishment of personalized therapeutic approaches, minimizing side effects and optimizing analgesic efficacy.


Assuntos
Metabolômica , Fenóis/farmacocinética , Tramadol/farmacocinética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Tapentadol
10.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931463

RESUMO

Tramadol and tapentadol are chemically related opioids prescribed for the analgesia of moderate to severe pain. Although safer than classical opioids, they are associated with neurotoxicity and behavioral dysfunction, which arise as a concern, considering their central action and growing misuse and abuse. The hippocampal formation is known to participate in memory and learning processes and has been documented to contribute to opioid dependence. Accordingly, the present study assessed molecular and cellular alterations in the hippocampal formation of Wistar rats intraperitoneally administered with 50 mg/kg tramadol or tapentadol for eight alternate days. Alterations were found in serum hydrogen peroxide, cysteine, homocysteine, and dopamine concentrations upon exposure to one or both opioids, as well as in hippocampal 8-hydroxydeoxyguanosine and gene expression levels of a panel of neurotoxicity, neuroinflammation, and neuromodulation biomarkers, assessed through quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of hippocampal formation sections showed increased glial fibrillary acidic protein (GFAP) and decreased cluster of differentiation 11b (CD11b) protein expression, suggesting opioid-induced astrogliosis and microgliosis. Collectively, the results emphasize the hippocampal neuromodulator effects of tramadol and tapentadol, with potential behavioral implications, underlining the need to prescribe and use both opioids cautiously.

11.
Einstein (Sao Paulo) ; 22: eAO0396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477721

RESUMO

BACKGROUND: The authors compared the levels of HIF1-α, VEGF, TNF-α, and IL-10 in peri-implant crevicular fluid between patients with or without peri-implantitis. HIF-1α levels were significantly high in the peri-implantitis possibly due to hypoxia triggered by persistent inflammation. OBJECTIVE: This study aimed to compare the levels of HIF1-α, VEGF, TNF-α, and IL-10 in the peri-implant crevicular fluid of patients with and without peri-implantitis. METHODS: Forty patients, comprising 16 with and 24 without peri-implantitis were selected. RESULTS: Patients with peri-implantitis exhibited significantly higher HIF-1α levels than those without peri-implantitis (p=0.0005). TNF-α revealed significant positive correlations with IL-10 (p=0.0008) and VEGF (p=0.0246), whereas HIF-1α and IL-10 levels (p=0.0041) demonstrated a negative and significative correlation in the peri-implantitis group. CONCLUSION: This study, for the first time demonstrates the balance of HIF-1α, TNFα, IL-10, and VEGF in peri-implantitis. It shows an elevated HIF-1α levels in patients with peri-implantitis, which could have stemmed from persistent inflammation- triggered hypoxia. Furthermore, the positive correlation between TNF-α and VEGF suggests intensified proinflammatory activity in peri-implantitis. Nevertheless, further studies are essential to understand these immune dynamics in peri-implantitis. BACKGROUND: Higher levels of HIF-1α in patients with peri-implantitis occurred possibly due to persistent hypoxia triggered by inflammation. BACKGROUND: Tissue hypoxia in peri-implantitis induced increase in HIF-1α consequently increased VEGF and angiogenesis, contributing to the persistence of inflammation.


Assuntos
Peri-Implantite , Humanos , Interleucina-10 , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Inflamação , Hipóxia
12.
Biochem Biophys Rep ; 38: 101704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623537

RESUMO

The Terminalia catappa L. tree is an ornamental and shade tree producter of a large amount of biological waste sent to landfills. Therefore, this plant constitutes so-called municipal solid wood waste (MSWW), which causes undesirable impacts on the environment, such as the generation of methane through the action of microorganisms. Sustainable solutions for the proper use and disposal of MSWW are a topic that has assumed great relevance at present due to the high quantities of MSWW generated worldwide. Pyrolysis constitutes an attractive alternative for the sustainable use of MSWW to produce higher value-added products. This study investigated the slow pyrolysis of Terminalia catappa L. fruit and the use of the aqueous fraction produced for bovine mastitis control. We obtained four fractions from the pyrolysis process, with average yields of the aqueous phase (36.22 ± 2.0 %), bio-oil (5.52 ± 0.4 %), biochar (37.55 ± 2.8 %) and gas (20.71 ± 2.0 %). The aqueous fraction was extracted with organic solvents and analyzed by gas chromatography coupled to mass spectrometry (GC‒MS). The extracts were composed mainly of phenols (50 %), furan derivatives, cyclic ketones, and others with lower contents, such as alcohols and esters. The aqueous fraction had bactericidal activity against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli, which are responsible for bovine mastitis. In addition, the fraction showed low cytotoxicity against a murine melanoma cell line from a C57BL/6J mouse, B16F10 cells and mouse peritoneal cells.

13.
Mol Metab ; 80: 101875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218535

RESUMO

OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , MicroRNAs , Obesidade Materna , Traumatismo por Reperfusão , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Traumatismo por Reperfusão/metabolismo
14.
Am J Physiol Endocrinol Metab ; 305(2): E230-42, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23695212

RESUMO

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.


Assuntos
Antioxidantes/farmacologia , Gluconeogênese/efeitos dos fármacos , Hipotálamo/metabolismo , Fígado/metabolismo , Melatonina/farmacologia , Proteína Oncogênica v-akt/metabolismo , Receptor MT1 de Melatonina/efeitos dos fármacos , Receptor MT2 de Melatonina/efeitos dos fármacos , Animais , Western Blotting , Imunofluorescência , Teste de Tolerância a Glucose , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Fígado/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Receptores Muscarínicos/efeitos dos fármacos
15.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678582

RESUMO

Tramadol and tapentadol, synthetic opioids commonly prescribed for moderate-to-severe pain, have a unique pharmacology that optimizes their analgesia and safety. However, they are not devoid of risks, presenting addictive, abuse, and dependence potential. While tramadol-reinforcing properties have been documented by various studies with human and animal models, including conditioned place preference (CPP) assays, no similar studies have been performed with tapentadol. In the present study, we performed CPP assays by intraperitoneally administering Wistar rats with a tramadol/tapentadol therapeutic dose. Animal permanence and the number of entries in the CPP compartments were recorded in the preconditioning phase and then 1 (T1), 7 (T7), and 14 (T14) days after conditioning. Both opioids induced a change in place preference (T1), suggesting that they have short-term reinforcing properties. However, only tramadol was associated with place preference retention (T7 and T14), with an increase in the number of entries in the opioid-paired compartment (T1 and T7), showing that it causes rewarding memory and incubation of craving. The results indicate that at therapeutic doses: (1) both drugs cause short-term rewarding effects and (2) as opposed to tramadol, tapentadol does not cause CPP retention, despite its higher central nervous system activity and stricter scheduling.

16.
Biomed Pharmacother ; 162: 114608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003033

RESUMO

Purinergic receptors are transmembrane proteins responsive to extracellular nucleotides and are expressed by several cell types throughout the human body. Among all identified subtypes, the P2×7 receptor has emerged as a relevant target for the treatment of inflammatory disease. Several clinical trials have been conducted to evaluate the effectiveness of P2×7R antagonists. However, to date, no selective antagonist has reached clinical use. In this work, we report the pharmacological evaluation of eleven N, S-acetal juglone derivatives as P2×7R inhibitors. Using in vitro assays and in vivo experimental models, we identified one derivative with promising inhibitory activity and low toxicity. Our in silico studies indicate that the 1,4-naphthoquinone moiety might be a valuable molecular scaffold for the development of novel P2×7R antagonists, as suggested by our previous studies.


Assuntos
Acetais , Naftoquinonas , Humanos , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo
17.
J Matern Fetal Neonatal Med ; 35(4): 630-635, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32164475

RESUMO

AIM: To evaluate the initial adhesion and formation of Streptococcus mutans biofilm in vitro in the presence of saliva, human colostrum and 3'-sialyllactose. METHODS: Human colostrum and salivas were collected from 30 mothers and newborn postpartum. Eighteen hours culture of S. mutans was treated with colostrum or 3'-sialyllactose in three different moments: before, during, and after 24 h from the microbial inoculation. Salivas were also tested in conjunction with colostrum. The assays were realized in sterile 96-well flat-bottom microtiter plates for 24 h. The biofilms were fixed, washed, stained with crystal violet, and extracted. Absorbance was measured to evaluate biofilm growth mass. RESULTS: Colostrum applied after and during the inoculation decreased biofilm formation when compared with the control (p < .05). The presence of saliva increased the biofilm biomass (p < .05). The application of 3'-sialyllactose reduced biofilm formation independently of moments of application (p < .05). CONCLUSION: Saliva contributed to the proliferation of biofilm and colostrum did not prevent the initial adhesion, but interfered in the accumulation and development of microorganisms in biofilms. 3'-sialyllactose significantly decreased biofilm formation. This information expands the importance of colostrum as a potent oral antimicrobial biofluid.


Assuntos
Colostro , Streptococcus mutans , Biofilmes , Feminino , Humanos , Recém-Nascido , Oligossacarídeos , Gravidez , Saliva
18.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513867

RESUMO

Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between µ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.

19.
J Clin Endocrinol Metab ; 106(2): 472-484, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33180910

RESUMO

BACKGROUND: The brown adipose tissue (BAT) is a potential target for the treatment of obesity and metabolic disorders. Its activation by cold exposure or adrenergic drugs can increase systemic insulin sensitivity and improve lipid metabolism; however, little is known about the effects of specific dietary components on BAT activity. OBJECTIVES: We asked if a short-term (4 weeks) dietary intervention with olive oil could modify BAT activity in lean and overweight/obese volunteers. DESIGN: This was a 4-week open clinical trial in which all participants underwent a dietary intervention with extra-virgin olive oil supplementation. As the initial intake of olive oil was controlled all the participants were controls of themselves. RESULTS: The intervention resulted in significant increase in blood monounsaturated fatty acid levels, which was accompanied by increased BAT activity in lean but not in overweight/obese volunteers. In the lean group, an increase in leptin was detected after the intervention, and low leptin values at the beginning of the study were predictive of greater BAT activity after intervention. In addition, increase in leptin concentration was associated with increased BAT activity. Three known endogenous mediators of BAT activity, secretin, fibroblast growth factor 21 (FGF21), and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) were increased by intervention in lean, whereas only secretin and FGF21 were increased in subjects with excessive weight. CONCLUSION: This study provides clinical evidence for the impact of monounsaturated fatty acids on BAT activity and an advance in the understanding of the beneficial health effects of olive oil.


Assuntos
Tecido Adiposo Marrom/fisiologia , Obesidade/dietoterapia , Azeite de Oliva/administração & dosagem , Sobrepeso/dietoterapia , Magreza/dietoterapia , Tecido Adiposo Marrom/efeitos dos fármacos , Adulto , Feminino , Seguimentos , Humanos , Masculino , Obesidade/metabolismo , Sobrepeso/metabolismo , Prognóstico , Magreza/metabolismo
20.
Eur J Pharmacol ; 887: 173356, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32763303

RESUMO

Capsaicin (CAP) is a spice-derived substance of the genus Capsicum, which has high pungency and therapeutic potential. For many years, it has been considered only as an agonist of the transient receptor potential vanilloid member 1 (TRPV1), a member from the family of transient potential receptors (TRPs). Capsaicin can lead to a variety of effects on cells, acting in specific organelles, and promoting different responses. Such studies, however, point the capsaicin acting independently of the TRPV1 channel, being able to alter membrane fluidity, ion flux, and reactive oxygen species levels on cells. In this context, capsaicin has been used as a therapeutic alternative for the treatment of some diseases, such as disorders related to pain and inflammation. Further, researchers have investigated the involvement of capsaicin in cancer. Thus, this review aims to examine the ways that capsaicin can act on cells independently of the vanilloid receptor activation and demonstrate the therapeutic uses of capsaicin as an alternative tool for some disorders.


Assuntos
Capsaicina/metabolismo , Capsaicina/uso terapêutico , Canais de Cátion TRPV/metabolismo , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA