Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 10(4): e1004278, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699255

RESUMO

The Myc family of transcription factors regulates a variety of biological processes, including the cell cycle, growth, proliferation, metabolism, and apoptosis. In Caenorhabditis elegans, the "Myc interaction network" consists of two opposing heterodimeric complexes with antagonistic functions in transcriptional control: the Myc-Mondo:Mlx transcriptional activation complex and the Mad:Max transcriptional repression complex. In C. elegans, Mondo, Mlx, Mad, and Max are encoded by mml-1, mxl-2, mdl-1, and mxl-1, respectively. Here we show a similar antagonistic role for the C. elegans Myc-Mondo and Mad complexes in longevity control. Loss of mml-1 or mxl-2 shortens C. elegans lifespan. In contrast, loss of mdl-1 or mxl-1 increases longevity, dependent upon MML-1:MXL-2. The MML-1:MXL-2 and MDL-1:MXL-1 complexes function in both the insulin signaling and dietary restriction pathways. Furthermore, decreased insulin-like/IGF-1 signaling (ILS) or conditions of dietary restriction increase the accumulation of MML-1, consistent with the notion that the Myc family members function as sensors of metabolic status. Additionally, we find that Myc family members are regulated by distinct mechanisms, which would allow for integrated control of gene expression from diverse signals of metabolic status. We compared putative target genes based on ChIP-sequencing data in the modENCODE project and found significant overlap in genomic DNA binding between the major effectors of ILS (DAF-16/FoxO), DR (PHA-4/FoxA), and Myc family (MDL-1/Mad/Mxd) at common target genes, which suggests that diverse signals of metabolic status converge on overlapping transcriptional programs that influence aging. Consistent with this, there is over-enrichment at these common targets for genes that function in lifespan, stress response, and carbohydrate metabolism. Additionally, we find that Myc family members are also involved in stress response and the maintenance of protein homeostasis. Collectively, these findings indicate that Myc family members integrate diverse signals of metabolic status, to coordinate overlapping metabolic and cytoprotective transcriptional programs that determine the progression of aging.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Longevidade/genética , Transativadores/genética , Animais , Regulação da Expressão Gênica/genética , Fator de Crescimento Insulin-Like I/genética , Transdução de Sinais/genética , Ativação Transcricional/genética
2.
Behav Neurosci ; 117(5): 904-11, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14570541

RESUMO

Adolescence in human males is a hormonally sensitive period when many adult behaviors develop, including sexual and aggressive behaviors. Using a rat model, the authors examined the effects of three anabolic-androgenic steroids (AAS) during puberty: testosterone, nandrolone, and stanozolol. Copulation, vocalizations, scent-marking, and aggression were tested following AAS exposure. Relative to gonadally intact controls, rats injected with testosterone showed a significant increase in scent-marking and aggression in the opponent's home cage. Nandrolone had no effect. Stanozolol significantly inhibited all behaviors. Results suggest that depending on the chemical structure of the steroid, AAS exposure during puberty affects several androgen-dependent behaviors. Because adolescence in humans is a period of hormonal change, abuse of AAS, particularly stanozolol, during this time may disrupt the establishment of normal adult behavior patterns.


Assuntos
Agressão/efeitos dos fármacos , Anabolizantes/farmacologia , Androgênios/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Fatores Etários , Agressão/fisiologia , Animais , Feminino , Masculino , Ratos , Ratos Long-Evans , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/fisiologia
3.
Horm Behav ; 46(2): 193-203, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15256309

RESUMO

The current study examined acute and long-term effects of anabolic-androgenic steroid (AAS) exposure during puberty on copulation, vocalizations, scent marking, and intermale aggression, both with and without tail pinch, in intact male rats. Animals received 5 mg/kg of testosterone, nandrolone, stanozolol, or vehicle, beginning at puberty. After 5 weeks, behavior tests were performed while continuing AAS injections. AAS treatment was then discontinued. Behaviors were tested during 3-5 weeks, 9-11 weeks, and 15-17 weeks of withdrawal. During AAS administration, stanozolol males showed significant reductions in all behaviors compared with controls, except aggression with tail pinch. Nandrolone treatment significantly reduced vocalizations and scent marking, and testosterone had no significant effect on behavior. During withdrawal, behaviors in stanozolol males recovered to control levels at variable rates: aggression at 4 weeks; mounts, vocalizations, and scent marking at 9 weeks; and ejaculations at 15 weeks of withdrawal. Stanozolol males showed significantly higher levels of tail pinch-induced aggression during every withdrawal test. Nandrolone-treated males scent-marked at control levels by 9 weeks withdrawal but displayed significantly fewer vocalizations and significantly more tail pinch-induced aggression than controls for the entire study. Testosterone-treated males scent-marked significantly below controls at 3 weeks withdrawal and showed significantly more tail pinch-induced aggression at 5 weeks withdrawal. All three AAS significantly increased tail pinch-induced aggression compared with corresponding nontail pinch tests, even at study endpoint. These results suggest that alterations in androgen-dependent behaviors by pubertal AAS exposure can persist long after drug exposure, and some effects may even be permanent.


Assuntos
Agressão/fisiologia , Anabolizantes/farmacologia , Androgênios/fisiologia , Copulação/fisiologia , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Agressão/efeitos dos fármacos , Análise de Variância , Animais , Copulação/efeitos dos fármacos , Esquema de Medicação , Masculino , Nandrolona/farmacologia , Ratos , Ratos Long-Evans , Estanozolol/farmacologia , Estatísticas não Paramétricas , Testosterona/fisiologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA