Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Synchrotron Radiat ; 16(Pt 2): 307-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19240344

RESUMO

Of all the current detection techniques with nanometre resolution, only X-ray microscopy allows imaging of nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying the response to mechanical stimuli, the challenge lies in its application with a precision comparable with the spatial resolution. In the first shear experiments performed in an X-ray microscope, this has been accomplished by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope. Thus shear-induced re-organization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.


Assuntos
Coloides/química , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Oscilometria/métodos , Resistência ao Cisalhamento
3.
J Phys Condens Matter ; 21(33): 336002, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21828614

RESUMO

The reduced magnetic moments of oxide-free FePt nanoparticles are discussed in terms of lattice expansion and local deviation from the averaged composition. By analyses of the extended x-ray absorption fine structure of FePt nanoparticles and bulk material measured both at the Fe K and Pt L(3) absorption edge, the composition within the single nanoparticles is found to be inhomogeneous, i.e. Pt is in a Pt-rich environment and, consequently, Fe is in an Fe-rich environment. The standard Fourier transformation-based analysis is complemented by a wavelet transformation method clearly visualizing the difference in the local composition. The dependence of the magnetic properties, i.e. the element-specific magnetic moments on the composition in chemically disordered Fe(x)Pt(1-x) alloys, is studied by fully relativistic SPR-KKR band structure calculations supported by experimental results determined from the x-ray magnetic circular dichroism of 50 nm thick films and bulk material.

4.
Phys Rev Lett ; 102(6): 067207, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19257632

RESUMO

The complex correlation of structure and magnetism in highly coercive monoatomic FePt surface alloys is studied using scanning tunneling microscopy, x-ray magnetic circular dichroism, and ab initio theory. Depending on the specific lateral atomic coordination of Fe either hard magnetic properties comparable to that of bulk FePt or complex noncollinear magnetism due to Dzyaloshinski-Moriya interactions are observed. Our calculations confirm the subtle dependence of the magnetic anisotropy and spin alignment on the local coordination and suggest that 3D stacking of Fe and Pt layers in bulk L1_{0} magnets is not essential to achieve high-anisotropy values.

5.
Phys Rev Lett ; 97(11): 117201, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17025924

RESUMO

X-ray absorption and magnetic circular dichroism spectra at both the Fe and Pt L(3,2) edges were measured on wet-chemically synthesized monodisperse Fe(50)Pt(50) particles with a mean diameter of 6.3 nm before and after complete removal of the organic ligands and the oxide shell covering the particles by soft hydrogen plasma resulting in a pure metallic state. After thermal treatment of the metallic particles, the coercive field increased by a factor of 6, the orbital magnetic moment at the Fe site increased by 330% and is reduced at the Pt site by 30%, while the effective spin moments did not change. A decrease of the frequency of oscillations in the extended x-ray absorption fine structure at the Pt L(3,2) edges provides evidence for crystallographic changes towards the L1(0) phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA