Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38041679

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Criança , Humanos , Esclerose Lateral Amiotrófica/genética , Esfingolipídeos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Serina
2.
Hum Mutat ; 43(4): 487-498, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077597

RESUMO

A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.


Assuntos
Artrogripose , Artrogripose/diagnóstico , Artrogripose/genética , Face , Humanos , Músculo Esquelético , Mutação , Fenótipo
3.
Neuropathol Appl Neurobiol ; 48(2): e12771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648194

RESUMO

AIMS: TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS: We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS: All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS: This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.


Assuntos
Encéfalo/metabolismo , Distroglicanas/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Proteínas de Transporte Vesicular/genética , Pré-Escolar , Feminino , Glicosilação , Humanos , Lactente , Fígado/metabolismo , Masculino , Distrofias Musculares/metabolismo , Mutação , Proteínas de Transporte Vesicular/metabolismo
4.
Neuropediatrics ; 52(5): 390-393, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33352606

RESUMO

Pur-α protein (PURA) syndrome manifests in early childhood with core features such as neurodevelopmental and speech delay, feeding difficulties, epilepsy, and hypotonia at birth. We identified three cases with PURA syndrome in a cohort of patients with unexplained muscular weakness, presenting with a predominantly neuromuscular and ataxic phenotype. We further characterize the clinical presentation of PURA syndrome including myopathic facies and muscular weakness as the main clinical symptoms in combination with elevated serum creatine kinase levels. Furthermore, we report two novel variants located in the conservative domains PUR-I and PUR-II. For the first time, we present the muscle biopsies of PURA syndrome patients, showing myopathic changes, fiber size variability, and fast fiber atrophy as the key features. PURA syndrome should be taken into consideration as a differential diagnosis in pediatric patients with unexplained muscle weakness.


Assuntos
Epilepsia , Deficiência Intelectual , Doenças Neuromusculares , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Epilepsia/genética , Humanos , Deficiência Intelectual/genética , Doenças Neuromusculares/complicações , Doenças Neuromusculares/diagnóstico , Fatores de Transcrição/genética
5.
Hum Mutat ; 39(12): 1980-1994, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168660

RESUMO

SH3 and cysteine-rich domain-containing protein 3 (STAC3) is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery, though its role and function are not yet completely understood. Here, we report 18 patients carrying a homozygous p.(Trp284Ser) STAC3 variant in addition to a patient compound heterozygous for the p.(Trp284Ser) and a novel splice site change (c.997-1G > T). Clinical severity ranged from prenatal onset with severe features at birth, to a milder and slowly progressive congenital myopathy phenotype. A malignant hyperthermia (MH)-like reaction had occurred in several patients. The functional analysis demonstrated impaired ECC. In particular, KCl-induced membrane depolarization resulted in significantly reduced sarcoplasmic reticulum Ca2+ release. Co-immunoprecipitation of STAC3 with CaV 1.1 in patients and control muscle samples showed that the protein interaction between STAC3 and CaV 1.1 was not significantly affected by the STAC3 variants. This study demonstrates that STAC3 gene analysis should be included in the diagnostic work up of patients of any ethnicity presenting with congenital myopathy, in particular if a history of MH-like episodes is reported. While the precise pathomechanism remains to be elucidated, our functional characterization of STAC3 variants revealed that defective ECC is not a result of CaV 1.1 sarcolemma mislocalization or impaired STAC3-CaV 1.1 interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Hipertermia Maligna/genética , Miotonia Congênita/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Cálcio/metabolismo , Criança , Pré-Escolar , Acoplamento Excitação-Contração , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Masculino , Hipertermia Maligna/etiologia , Hipertermia Maligna/metabolismo , Miotonia Congênita/complicações , Miotonia Congênita/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Transporte Proteico , Retículo Sarcoplasmático/metabolismo , Índice de Gravidade de Doença , Sequenciamento do Exoma , Adulto Jovem
6.
J Neurol Neurosurg Psychiatry ; 89(7): 762-768, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437916

RESUMO

BACKGROUND: Defects in glycosylation of alpha-dystroglycan (α-DG) cause autosomal-recessive disorders with wide clinical and genetic heterogeneity, with phenotypes ranging from congenital muscular dystrophies to milder limb girdle muscular dystrophies. Patients show variable reduction of immunoreactivity to antibodies specific for glycoepitopes of α-DG on a muscle biopsy. Recessive mutations in 18 genes, including guanosine diphosphate mannose pyrophosphorylase B (GMPPB), have been reported to date. With no specific clinical and pathological handles, diagnosis requires parallel or sequential analysis of all known genes. METHODS: We describe clinical, genetic and biochemical findings of 21 patients with GMPPB-associated dystroglycanopathy. RESULTS: We report eight novel mutations and further expand current knowledge on clinical and muscle MRI features of this condition. In addition, we report a consistent shift in the mobility of beta-dystroglycan (ß-DG) on Western blot analysis of all patients analysed by this mean. This was only observed in patients with GMPPB in our large dystroglycanopathy cohort. We further demonstrate that this mobility shift in patients with GMPPB was due to abnormal N-linked glycosylation of ß-DG. CONCLUSIONS: Our data demonstrate that a change in ß-DG electrophoretic mobility in patients with dystroglycanopathy is a distinctive marker of the molecular defect in GMPPB.


Assuntos
Distroglicanas/metabolismo , Guanosina Difosfato Manose/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutação/genética , Nucleotidiltransferases/genética , Adolescente , Idoso , Biomarcadores/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/patologia
7.
Acta Neuropathol ; 133(4): 517-533, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28012042

RESUMO

Muscle contraction upon nerve stimulation relies on excitation-contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Adolescente , Adulto , Cálcio/metabolismo , Canais de Cálcio Tipo L , Células Cultivadas , Criança , Estudos de Coortes , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Miotonia Congênita/diagnóstico por imagem , Miotonia Congênita/patologia , Fenótipo , Homologia de Sequência de Aminoácidos , Adulto Jovem
8.
Brain ; 139(Pt 3): 674-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700687

RESUMO

Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.


Assuntos
Hipocinesia/diagnóstico , Hipocinesia/genética , Mutação/genética , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Masculino , Linhagem , Índice de Gravidade de Doença , Xenopus laevis
9.
Am J Hum Genet ; 92(3): 354-65, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23453667

RESUMO

Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in ß-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a ß-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.


Assuntos
Distroglicanas/genética , Distrofias Musculares/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Linhagem Celular , Distroglicanas/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Predisposição Genética para Doença , Glicosilação , Humanos , Lactente , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Distrofias Musculares/enzimologia , Distrofias Musculares/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Peixe-Zebra
10.
Am J Hum Genet ; 93(1): 29-41, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23768512

RESUMO

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


Assuntos
Distroglicanas/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Nucleotidiltransferases/metabolismo , Animais , Pré-Escolar , Análise Mutacional de DNA/métodos , Distroglicanas/genética , Anormalidades do Olho/patologia , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Estudos de Associação Genética/métodos , Glicosilação , Guanosina Difosfato Manose/metabolismo , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/enzimologia , Nucleotidiltransferases/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA