Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(10): 2176-2189, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39265574

RESUMO

We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.


Assuntos
Regiões 3' não Traduzidas , Elementos Alu , RNA de Cadeia Dupla , Elementos Alu/genética , Humanos , RNA de Cadeia Dupla/genética , Regiões 3' não Traduzidas/genética , Íntrons/genética , Mutagênese Insercional/genética , Homozigoto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Hum Genomics ; 18(1): 21, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414044

RESUMO

BACKGROUND: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis. RESULTS: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation. In total, we analyzed 67 SPINK1 coding SNVs, which account for 9.3% of the 720 possible coding SNVs. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through detailed comparison of FLGSA results and SpliceAI predictions, we inferred that the remaining 653 untested coding SNVs in the SPINK1 gene are unlikely to significantly affect splicing. Of the 12 splice-altering events, nine produced both normally spliced and aberrantly spliced transcripts, while the remaining three only generated aberrantly spliced transcripts. These splice-impacting SNVs were found solely in exons 1 and 2, notably at the first and/or last coding nucleotides of these exons. Among the 12 splice-altering events, 11 were missense variants (2.17% of 506 potential missense variants), and one was synonymous (0.61% of 164 potential synonymous variants). Notably, adjusting the SpliceAI cut-off to 0.30 instead of the conventional 0.20 would improve specificity without reducing sensitivity. CONCLUSIONS: By integrating FLGSA with SpliceAI, we have determined that less than 2% (1.67%) of all possible coding SNVs in SPINK1 significantly influence splicing outcomes. Our findings emphasize the critical importance of conducting splicing analysis within the broader genomic sequence context of the study gene and highlight the inherent uncertainties associated with intermediate SpliceAI scores (0.20 to 0.80). This study contributes to the field by being the first to prospectively interpret all potential coding SNVs in a disease-associated gene with a high degree of accuracy, representing a meaningful attempt at shifting from retrospective to prospective variant analysis in the era of exome and genome sequencing.


Assuntos
Splicing de RNA , Inibidor da Tripsina Pancreática de Kazal , Humanos , Inibidor da Tripsina Pancreática de Kazal/genética , Estudos Retrospectivos , Splicing de RNA/genética , Éxons/genética , Sequência de Bases , Processamento Alternativo/genética
3.
Genet Med ; 26(5): 101087, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Interneurônios , Fatores de Transcrição Sp , Fatores de Transcrição , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Epilepsia/genética , Epilepsia/patologia , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Sp/genética
4.
Am J Med Genet A ; 194(5): e63532, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38192009

RESUMO

Alpha-mannosidosis is a rare autosomal recessive lysosomal storage disorder caused by biallelic mutations in the MAN2B1 gene and characterized by a wide clinical heterogeneity. Diagnosis for this multisystemic disorder is confirmed by the presence of either a deficiency in the lysosomal enzyme acid alpha-mannosidase or biallelic mutations in the MAN2B1 gene. This diagnosis confirmation is crucial for both clinical management and genetic counseling purposes. Here we describe a late diagnosis of alpha-mannosidosis in a patient presenting with syndromic intellectual disability, and a rare retinopathy, where reverse phenotyping played a pivotal role in interpreting the exome sequencing result. While a first missense variant was classified as a variant of uncertain significance, the phenotype-guided analysis helped us detect and interpret an in-trans apparent alu-element insertion, which appeared to be a copy number variant (CNV) not identified by the CNV caller. A biochemical analysis showing abnormal excretion of urinary mannosyloligosaccharide and an enzyme assay permitted the re-classification of the missense variant to likely pathogenic, establishing the diagnosis of alpha-mannosidosis. This work emphasizes the importance of reverse phenotyping in the context of exome sequencing.


Assuntos
alfa-Manosidose , Humanos , alfa-Manosidose/diagnóstico , alfa-Manosidose/genética , Variações do Número de Cópias de DNA/genética , alfa-Manosidase/genética , Mutação de Sentido Incorreto/genética , Fenótipo
5.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273547

RESUMO

Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis. The aim of this review is to present the advances that science and medicine have brought to our understanding of the pathophysiology of the disease and its management, which in many ways, epitomizes modern molecular genetic research. Since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, modeling the CFTR protein, deciphering its function as an ion channel, and identifying its molecular partners have led to numerous therapeutic advances. The most significant advancement in this field has been the discovery of protein modulators that can target its membrane localization and chloride channel activity. However, further progress is needed to ensure that all patients can benefit from a therapy tailored to their mutations, with the primary challenge being the development of treatments for mutations leading to a complete absence of the protein. The present review delves into the history of the multifaceted world of CF, covering main historical facts, current landscape, clinical management, emerging therapies, patient perspectives, and the importance of ongoing research, bridging science and medicine in the fight against the disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/terapia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Animais
6.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33468626

RESUMO

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias , Pancreatite Crônica , Molécula 1 de Interação Estromal , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
7.
Hum Genomics ; 16(1): 31, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974416

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)-recommended five variant classification categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) have been widely used in medical genetics. However, these guidelines are fundamentally constrained in practice owing to their focus upon Mendelian disease genes and their dichotomous classification of variants as being either causal or not. Herein, we attempt to expand the ACMG guidelines into a general variant classification framework that takes into account not only the continuum of clinical phenotypes, but also the continuum of the variants' genetic effects, and the different pathological roles of the implicated genes. MAIN BODY: As a disease model, we employed chronic pancreatitis (CP), which manifests clinically as a spectrum from monogenic to multifactorial. Bearing in mind that any general conceptual proposal should be based upon sound data, we focused our analysis on the four most extensively studied CP genes, PRSS1, CFTR, SPINK1 and CTRC. Based upon several cross-gene and cross-variant comparisons, we first assigned the different genes to two distinct categories in terms of disease causation: CP-causing (PRSS1 and SPINK1) and CP-predisposing (CFTR and CTRC). We then employed two new classificatory categories, "predisposing" and "likely predisposing", to replace ACMG's "pathogenic" and "likely pathogenic" categories in the context of CP-predisposing genes, thereby classifying all pathologically relevant variants in these genes as "predisposing". In the case of CP-causing genes, the two new classificatory categories served to extend the five ACMG categories whilst two thresholds (allele frequency and functional) were introduced to discriminate "pathogenic" from "predisposing" variants. CONCLUSION: Employing CP as a disease model, we expand ACMG guidelines into a five-category classification system (predisposing, likely predisposing, uncertain significance, likely benign, and benign) and a seven-category classification system (pathogenic, likely pathogenic, predisposing, likely predisposing, uncertain significance, likely benign, and benign) in the context of disease-predisposing and disease-causing genes, respectively. Taken together, the two systems constitute a general variant classification framework that, in principle, should span the entire spectrum of variants in any disease-related gene. The maximal compliance of our five-category and seven-category classification systems with the ACMG guidelines ought to facilitate their practical application.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Frequência do Gene , Testes Genéticos , Variação Genética , Genômica , Humanos , Pancreatite Crônica/genética , Análise de Sequência de DNA , Inibidor da Tripsina Pancreática de Kazal/genética , Estados Unidos
8.
Pancreatology ; 23(5): 491-506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581535

RESUMO

BACKGROUND: PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS: All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS: The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS: We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.


Assuntos
População do Leste Asiático , Pancreatite Crônica , Humanos , Alelos , Frequência do Gene , Predisposição Genética para Doença , Mutação/genética , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Tripsina/genética , Tripsinogênio/genética , China , França
9.
Pancreatology ; 23(5): 507-511, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270400

RESUMO

Mutations in the PNLIP gene have recently been implicated in chronic pancreatitis. Several PNLIP missense variants have been reported to cause protein misfolding and endoplasmic reticulum stress although genetic evidence supporting their association with chronic pancreatitis is currently lacking. Protease-sensitive PNLIP missense variants have also been associated with early-onset chronic pancreatitis although the underlying pathological mechanism remains enigmatic. Herein, we provide new evidence to support the association of protease-sensitive PNLIP variants (but not misfolding PNLIP variants) with pancreatitis. Specifically, we identified protease-sensitive PNLIP variants in 5 of 373 probands (1.3%) with a positive family history of pancreatitis. The protease-sensitive variants, p.F300L and p.I265R, were found to segregate with the disease in three families, including one exhibiting a classical autosomal dominant inheritance pattern. Consistent with previous findings, protease-sensitive variant-positive patients were often characterized by early-onset disease and invariably experienced recurrent acute pancreatitis, although none has so far developed chronic pancreatitis.


Assuntos
Lipase , Pancreatite Crônica , Peptídeo Hidrolases , Humanos , Doença Aguda , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Peptídeo Hidrolases/genética , Lipase/genética
10.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949771

RESUMO

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Assuntos
Quimases , Pancreatite Crônica , Humanos , Quimases/genética , Predisposição Genética para Doença , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fatores de Risco
11.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445855

RESUMO

More than 2000 variations are described within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene and related to large clinical issues from cystic fibrosis to mono-organ diseases. Although these CFTR-associated diseases have been well documented, a large phenotype spectrum is observed and correlations between phenotypes and genotypes are still not well established. To address this issue, we present several regulatory elements that can modulate CFTR gene expression in a tissue-specific manner. Among them, cis-regulatory elements act through chromatin loopings and take part in three-dimensional structured organization. With tissue-specific transcription factors, they form chromatin modules and can regulate gene expression. Alterations of specific regulations can impact and modulate disease expressions. Understanding all those mechanisms highlights the need to expand research outside the gene to enhance our knowledge.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fatores de Transcrição/metabolismo , Expressão Gênica , Cromatina , Regulação da Expressão Gênica
12.
Hum Mutat ; 43(2): 228-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923708

RESUMO

The recent discovery of TRPV6 as a pancreatitis susceptibility gene served to identify a novel mechanism of chronic pancreatitis (CP) due to Ca2+ dysregulation. Herein, we analyzed TRPV6 in 81 probands with hereditary CP (HCP), 204 probands with familial CP (FCP), and 462 patients with idiopathic CP (ICP) by targeted next-generation sequencing. We identified 25 rare nonsynonymous TRPV6 variants, 18 of which had not been previously reported. All 18 variants were characterized by a Ca2+ imaging assay, with 8 being identified as functionally deficient. Evaluation of functionally deficient variants in the three CP cohorts revealed two novel findings: (i) functionally deficient TRPV6 variants appear to occur more frequently in HCP/FCP patients than in ICP patients (3.2% vs. 1.5%) and (ii) functionally deficient TRPV6 variants found in HCP and FCP probands appear to be more frequently coinherited with known risk variants in SPINK1, CTRC, and/or CFTR than those found in ICP patients (66.7% vs 28.6%). Additionally, genetic analysis of available HCP and FCP family members revealed complex patterns of inheritance in some families. Our findings confirm that functionally deficient TRPV6 variants represent an important contributor to CP. Importantly, functionally deficient TRPV6 variants account for a significant proportion of cases of HCP/FCP.


Assuntos
Canais de Cálcio , Pancreatite Crônica , Canais de Cátion TRPV , Canais de Cálcio/genética , Proteínas de Transporte/genética , Predisposição Genética para Doença , Humanos , Mutação , Pancreatite Crônica/genética , Canais de Cátion TRPV/genética , Inibidor da Tripsina Pancreática de Kazal/genética
13.
Hum Mutat ; 43(12): 2308-2323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273432

RESUMO

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Teorema de Bayes , Splicing de RNA/genética , Éxons/genética , Sítios de Splice de RNA/genética , Aprendizado de Máquina , Íntrons/genética
14.
Hum Genet ; 141(8): 1327-1338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35089416

RESUMO

Trypsinogen (PRSS1, PRSS2) copy number gains and regulatory variants have both been proposed to elevate pancreatitis risk through a gene dosage effect (i.e., by increasing the expression of wild-type protein). However, to date, their impact on pancreatitis risk has not been thoroughly evaluated whilst the underlying pathogenic mechanisms remain to be explicitly investigated in mouse models. Genetic studies of the rare trypsinogen duplication and triplication copy number variants (CNVs), and the common rs10273639C variant, were collated from PubMed and/or ClinVar. Mouse studies that analyzed the influence of a transgenically expressed wild-type human PRSS1 or PRSS2 gene on the development of pancreatitis were identified from PubMed. The genetic effects of the different risk genotypes, in terms of odds ratios, were calculated wherever appropriate. The genetic effects of the rare trypsinogen duplication and triplication CNVs were also evaluated by reference to their associated disease subtypes. We demonstrate a positive correlation between increased trypsinogen gene dosage and pancreatitis risk in the context of the rare duplication and triplication CNVs, and between the level of trypsinogen expression and disease risk in the context of the heterozygous and homozygous rs10273639C-tagged genotypes. We retrospectively identify three mouse transgenic studies that are informative in relation to the pathogenic mechanism underlying the trypsinogen gene dosage effect in pancreatitis. Trypsinogen gene dosage correlates with pancreatitis risk across genetic and transgenic studies, highlighting the fundamental role of dysregulated expression of wild-type trypsinogen in the etiology of pancreatitis. Specifically downregulating trypsinogen expression in the pancreas may serve as a potential therapeutic and/or prevention strategy for pancreatitis.


Assuntos
Pancreatite , Tripsina , Tripsinogênio , Animais , Animais Geneticamente Modificados , Dosagem de Genes , Humanos , Camundongos , Mutação , Pancreatite/genética , Estudos Retrospectivos , Tripsina/genética , Tripsina/metabolismo , Tripsinogênio/genética , Tripsinogênio/metabolismo
15.
Hum Genomics ; 15(1): 44, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256850

RESUMO

BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transtorno Autístico/epidemiologia , Transtorno Autístico/patologia , Elementos Facilitadores Genéticos/genética , Exoma/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Hipotonia Muscular/epidemiologia , Hipotonia Muscular/patologia , Mutação/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Neurônios/patologia
16.
Transfusion ; 62(4): 758-763, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098548

RESUMO

BACKGROUND: In the RH blood group genes, molecular variants that alter antigen expression with potential clinical relevance are frequently identified and reported in the literature. STUDY DESIGN AND METHODS: A pregnant woman in her first pregnancy, who originates from Japan, was typed by routine serological testing. The RHCE gene was investigated to identify single nucleotide variants (SNVs) and/or structural variants by a commercial platform, Sanger sequencing, and quantitative multiplex PCR of short fluorescent fragments. The haplotypes were determined by sequencing PCR fragments generated from genomic DNA and subcloned into a plasmid vector. Effect on splicing was predicted by bioinformatics tools, including SpliceAI and the splicing module of Alamut. In parallel, functional analysis was carried out by a minigene splicing assay. RESULTS: A patient with no transfusion history was typed RH:1,2w,3,4,5w. An unreported single variant was identified in RHCE intron 4 at the heterozygous state: c.634+4A>G. Minigene splicing assay showed that this SNV decreases significantly the relative abundance of the full-length transcript, in accordance with the predictions made by the Alamut tools, but not SpliceAI, suggesting expression of a normal RhCE protein. CONCLUSION: Overall, the novel RHCE*02(c.634+4A>G) allele alters quantitatively, but not qualitatively, the expression of C and e in the RH blood group system, indicating that the patient is not at risk for alloimmunization and may safely receive C+e+ red blood cell units. This report illustrates the relevance of functional assays for the interpretation of rare variants and, specifically, how it may help guide transfusion management in patients.


Assuntos
Antígenos E da Hepatite B , Sistema do Grupo Sanguíneo Rh-Hr , Alelos , Feminino , Humanos , Japão , Gravidez , Gestantes , Sistema do Grupo Sanguíneo Rh-Hr/genética
17.
Pancreatology ; 22(5): 564-571, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35589511

RESUMO

OBJECTIVE: Non-alcoholic chronic pancreatitis (NACP) frequently develops in the setting of genetic susceptibility associated with alterations in genes that are highly expressed in the pancreas. However, the genetic basis of NACP remains unresolved in a significant number of patients warranting a search for further risk genes. DESIGN: We analyzed CUZD1, which encodes the CUB and zona pellucida-like domains 1 protein that is found in high levels in pancreatic acinar cells. We sequenced the coding region in 1163 European patients and 2018 European controls. In addition, we analyzed 297 patients and 1070 controls from Japan. We analyzed secretion of wild-type and mutant CUZD1 from transfected cells using Western blotting. RESULTS: In the European cohort, we detected 30 non-synonymous variants. Using different prediction tools (SIFT, CADD, PROVEAN, PredictSNP) or the combination of these tools, we found accumulation of predicted deleterious variants in patients (p-value range 0.002-0.013; OR range 3.1-5.2). No association was found in the Japanese cohort, in which 13 non-synonymous variants were detected. Functional studies revealed >50% reduced secretion of 7 variants, however, these variants were not significantly enriched in European CP patients. CONCLUSION: Our data indicate that CUZD1 might be a novel susceptibility gene for NACP. How these variants predispose to pancreatitis remains to be elucidated.


Assuntos
Proteínas de Membrana , Pancreatite Crônica , Zona Pelúcida , Células Acinares/metabolismo , Western Blotting , Predisposição Genética para Doença , Humanos , Proteínas de Membrana/genética , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Zona Pelúcida/metabolismo , Zona Pelúcida/patologia
18.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621276

RESUMO

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Assuntos
Encefalopatias , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras , Encefalopatias/metabolismo , DNA Complementar/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Proteínas/metabolismo
19.
Bioorg Med Chem Lett ; 72: 128866, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752380

RESUMO

The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis. We evaluated the action of PF-429242 in human bronchial cells expressing the most frequent mutation of CFTR (p.Phe508del) found in patients. We observed that PF-429242 increases the synthesis of the mRNA and the protein encoded by the CFTR gene harbouring the mutation. We also observed that PF-429242 alleviates the defects of the p.Phe508del-CFTR channel in human Cystic Fibrosis cells. Our results suggest that aminopyrrolidine amide is a potential therapeutic target for Cystic Fibrosis that could also have beneficial effects in other diseases involving CFTR, such as the Chronic Obstructive Pulmonary Disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Amidas/farmacologia , Amidas/uso terapêutico , Cloretos/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons
20.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805969

RESUMO

The human genome is covered by 8% of candidate cis-regulatory elements. The identification of distal acting regulatory elements and an understanding of their action are crucial to determining their key role in gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic diseases. Non-syndromic hearing loss (i.e., DFNB1) is mostly due to GJB2 (Gap Junction Beta 2) variations and DFNB1 large deletions. Although several GJB2 cis-regulatory elements (CREs) have been described, GJB2 gene regulation remains not well understood. We investigated the endogenous effect of these CREs with CRISPR (clustered regularly interspaced short palindromic repeats) disruptions and observed GJB2 expression. To decipher the GJB2 regulatory landscape, we used the 4C-seq technique and defined new chromatin contacts inside the DFNB1 locus, which permit DNA loops and long-range regulation. Moreover, through ChIP-PCR, we determined the involvement of the MEIS1 transcription factor in GJB2 expression. Taken together, the results of our study enable us to describe the 3D DFNB1 regulatory landscape.


Assuntos
Cromatina , Conexina 26 , Conexinas , Surdez , Proteína Meis1 , Cromatina/genética , Cromatina/metabolismo , Conexina 26/genética , Conexina 26/metabolismo , Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Surdez/metabolismo , Humanos , Mutação , Proteína Meis1/genética , Proteína Meis1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA