Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Dev Dyn ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924277

RESUMO

BACKGROUND: Sex-specific morphogenesis occurs in Caenorhabditis elegans in the vulva of the hermaphrodite and in the male tail during the last larval stage. Temporal progression of vulva morphogenesis has been described in fine detail. However, a similar precise description of male tail morphogenesis was lacking. RESULTS: We here describe morphogenesis of the male tail at time points matching vulva development with special focus on morphogenesis of the tail tip. Using fluorescent reporters, we follow changes in cell shapes, cell fusions, nuclear migration, modifications in the basement membrane, and formation of a new apical extracellular matrix at the end of the tail. CONCLUSION: Our analysis answers two open questions about tail tip morphogenesis (TTM) by showing that one of the four tail tip cells, hyp11, remains largely separate, while the other cells fully fuse with each other and with two additional tail cells to form a ventral tail syncytium. This merger of cells begins at the apical surface early during TTM but is only completed toward the end of the process. This work provides a framework for future investigations of cell biological factors that drive male tail morphogenesis.

2.
J Pediatr Gastroenterol Nutr ; 78(4): 836-845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38344848

RESUMO

OBJECTIVE: Analyze fecal and blood samples at point of diagnosis in IgE mediated cow's milk protein allergy (CMPA) and non-IgE mediated (NIM)-CMPA patients to look for potential new biomarkers. PATIENTS AND METHODS: Fourteen patients with IgE mediated CMPA and 13 with NIM-CMPA were recruited in three hospitals in the north of Spain, and were compared with 25 infants from a control group of the same age range. To characterize intestinal microbiota, 16S rDNA gene and internal transcribed spacer amplicons of bifidobacteria were sequenced with Illumina technology. Fatty acids were analyzed by gas chromatography, meanwhile intestinal inflammation markers were quantified by enzyme-linked immunosorbent assay and a multiplex system. Immunological analysis of blood was performed by flow cytometry. RESULTS: The fecal results obtained in the NIM-CMPA group stand out. Among them, a significant reduction in the abundance of Bifidobacteriaceae and Bifidobacterium sequences with respect to controls was observed. Bifidobacterial species were also different, highlighting the lower abundance of Bifidobacterium breve sequences. Fecal calprotectin levels were found to be significantly elevated in relation to IgE mediated patients. Also, a higher excretion of IL-10 and a lower excretion of IL-1ra and platelet derived growth factor-BB was found in NIM-CMPA patients. CONCLUSIONS: The differential fecal parameters found in NIM-CMPA patients could be useful in the diagnosis of NIM food allergy to CM proteins.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Hipersensibilidade a Leite , Lactente , Feminino , Animais , Humanos , Bovinos , Imunoglobulina E , Hipersensibilidade a Leite/diagnóstico , Proteínas do Leite
3.
Artigo em Inglês | MEDLINE | ID: mdl-39175183

RESUMO

OBJECTIVES: Food protein-induced enterocolitis syndrome (FPIES) is a severe type of non-IgE (immunoglobulin E)-mediated (NIM) food allergy, with cow's milk (CM) being the most common offending food. The relationship between the gut microbiota and its metabolites with the inflammatory process in infants with CM FPIES is unknown, although evidence suggests a microbial dysbiosis in NIM patients. This study was performed to contribute to the knowledge of the interaction between the gut microbiota and its derived metabolites with the local immune system in feces of infants with CM FPIES at diagnosis. METHODS: Twelve infants with CM FPIES and a matched healthy control group were recruited and the gut microbiota was investigated by 16S amplicon and shotgun sequencing. Fatty acids (FAs) were measured by gas chromatography, while immune factors were determined by enzyme-linked immunosorbent assay and Luminex technology. RESULTS: A specific pattern of microbiota in the gut of CM FPIES patients was found, characterized by a high abundance of enterobacteria. Also, an intense excretion of FAs in the feces of these infants was observed. Furthermore, correlations were found between fecal bifidobacteria and immune factors. CONCLUSION: These fecal determinations may be useful to gain insight into the pathophysiology of this syndrome and should be taken in consideration for future studies of FPIES patients.

4.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293029

RESUMO

Background: Sex-specific morphogenesis occurs in C. elegans in the vulva of the hermaphrodite and in the male tail during the last larval stage. Temporal progression of vulva morphogenesis has been described in fine detail. However, a similar precise description of male tail morphogenesis was lacking. Results: We here describe morphogenesis of the male tail at time points matching vulva development with special focus on morphogenesis of the tail tip. Using fluorescent reporters, we follow changes in cell shapes, cell fusions, nuclear migration, modifications in the basement membrane and formation of a new apical extracellular matrix at the end of the tail. Conclusion: Our analysis answers two open questions about tail tip morphogenesis (TTM) by showing that one of the four tail tip cells, hyp11, remains separate while the other cells fuse with each other and with two additional tail cells to form a ventral tail syncytium. This fusion begins early during TTM but is only completed towards the end of the process. This work provides a framework for future investigations of cell-biological factors that drive male tail morphogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA