Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Lett ; 8(3): 387-396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38818418

RESUMO

In the field of social evolution, inclusive fitness theory has been successful in making a wide range of qualitative predictions on expected patterns of cooperation and conflict. Nevertheless, outside of sex ratio theory, inclusive fitness models that make accurate quantitative predictions remain relatively rare. Past models dealing with caste fate conflict in insect societies, for example, successfully predicted that if female larvae can control their own caste fate, an excess should opt to selfishly develop as queens. Available models, however, were unable to accurately predict levels of queen production observed in Melipona bees-a genus of stingless bees where caste is self-determined-as empirically observed levels of queen production are approximately two times lower than the theoretically predicted ones. Here, we show that this discrepancy can be resolved by explicitly deriving the colony-level cost of queen overproduction from a dynamic model of colony growth, requiring the incorporation of parameters of colony growth and demography, such as the per-capita rate at which new brood cells are built and provisioned, the percentage of the queen's eggs that are female, costs linked with worker reproduction and worker mortality. Our revised model predicts queen overproduction to more severely impact colony productivity, resulting in an evolutionarily stable strategy that is approximately half that of the original model, and is shown to accurately predict actual levels of queen overproduction observed in different Melipona species. Altogether, this shows how inclusive fitness models can provide accurate quantitative predictions, provided that costs and benefits are modeled in sufficient detail and are measured precisely.

2.
Curr Biol ; 34(9): 1996-2001.e3, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508185

RESUMO

The transmission of complex behavior and culture in humans has long been attributed to advanced forms of social learning,1,2 which play a crucial role in our technological advancement.3 While similar phenomena of behavioral traditions and cultural inheritance have been observed in animals,1,2,4,5,6 including in primates,7 whales,8 birds,9 and even insects,10 the underlying mechanisms enabling the persistence of such animal traditions, particularly in insects, are less well understood. This study introduces pioneering evidence of enduring architectural traditions in the stingless bee Scaptotrigona depilis, which are maintained without any evidence for social learning. We demonstrate that S. depilis exhibits two distinct nest architectures, comprising either helicoidal or flat, stacked horizontal combs, which are transmitted across generations through stigmergy11,12,13,14,15,16,17-an environmental feedback mechanism whereby the presence of the existing comb structures guides subsequent construction behaviors-thereby leading to a form of environmental inheritance.18,19,20 Cross-fostering experiments further show that genetic factors or prior experience does not drive the observed variation in nest architecture. Moreover, the experimental introduction of corkscrew dislocations within the combs prompted helicoidal building, confirming the use of stigmergic building rules. At a theoretical level, we establish that the long-term equilibrium of building in the helicoidal pattern fits with the expectations of a two-state Markov chain model. Overall, our findings provide compelling evidence for the persistence of behavioral traditions in an insect, based on a simple mechanism of environmental inheritance and stigmergic interactions, without requiring any sophisticated learning mechanism, thereby expanding our understanding of how traditions can be maintained in non-human species.


Assuntos
Comportamento de Nidação , Animais , Abelhas/fisiologia , Abelhas/genética , Aprendizado Social , Comportamento Social
3.
PLoS One ; 16(5): e0250720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999926

RESUMO

In the highly eusocial wasp, Vespula vulgaris, queens produce honest signals to alert their subordinate workers of their fertility status, and therefore they are reproductively suppressed and help in the colony. The honesty of the queen signals is likely maintained due to hormonal regulation, which affects fertility and fertility cue expression. Here, we tested if hormonal pleiotropy could support the hypothesis that juvenile hormone controls fertility and fertility signaling in workers. In addition, we aimed to check oocyte size as a proxy of fertility. To do that, we treated V. vulgaris workers with synthetic versions of juvenile hormone (JH) analogue and a JH inhibitor, methoprene and precocene, respectively. We dissected the treated females to check ovary activation and analyzed their chemical profile. Our results showed that juvenile hormone has an influence on the abundance of fertility linked compounds produced by workers, and it also showed to increase oocyte size in workers. Our results corroborate the hypothesis that juvenile hormone controls fertility and fertility signaling in workers, whereby workers are unable to reproduce without alerting other colony members of their fertility. This provides supports the hypothesis that hormonal pleiotropy contributes to keeping the queen fertility signals honest.


Assuntos
Fertilidade/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vespas/efeitos dos fármacos , Vespas/fisiologia , Animais , Feminino , Reprodução , Vespas/citologia
4.
Curr Zool ; 67(5): 519-530, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34616950

RESUMO

In social insects, it has been suggested that reproduction and the production of particular fertility-linked cuticular hydrocarbons (CHC) may be under shared juvenile hormone (JH) control, and this could have been key in predisposing such cues to later evolve into full-fledged queen pheromone signals. However, to date, only few studies have experimentally tested this "hormonal pleiotropy" hypothesis. Here, we formally test this hypothesis using data from four species of Polistine wasps, Polistes dominula, Polistes satan, Mischocyttarus metathoracicus, and Mischocyttarus cassununga, and experimental treatments with JH using the JH analogue methoprene and the anti-JH precocene. In line with reproduction being under JH control, our results show that across these four species, precocene significantly decreased ovary development when compared with both the acetone solvent-only control and the methoprene treatment. Consistent with the hormonal pleiotropy hypothesis, these effects on reproduction were further matched by subtle shifts in the CHC profiles, with univariate analyses showing that in P. dominula and P. satan the abundance of particular linear alkanes and mono-methylated alkanes were affected by ovary development and our hormonal treatments. The results indicate that in primitively eusocial wasps, and particularly in Polistes, reproduction and the production of some CHC cues are under joint JH control. We suggest that pleiotropic links between reproduction and the production of such hydrocarbon cues have been key enablers for the origin of true fertility and queen signals in more derived, advanced eusocial insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA