Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 169(4): 447-453, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929656

RESUMO

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.com/TCR-pred/) to predict the interactions between α chain CDR3 TCR sequences and 116 epitopes or 25 MHC types, as well as the interactions between ß chain CDR3 TCR sequences and 202 epitopes or 28 MHC types. The TCR-Pred web application is based on the data (more 250 000 unique CDR3 TCR sequences) from VDJdb, McPAS-TCR, and IEDB databases and the proposed approach. The average AUC values of the prediction accuracy calculated using a 20-fold cross-validation procedure varies from 0.857 to 0.884. The created web application may be useful in studies related with T-cell profiling based on CDR3 TCR sequences.


Assuntos
Software , Linfócitos T , Epitopos , Teorema de Bayes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta
2.
J Chem Inf Model ; 63(21): 6463-6468, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37871298

RESUMO

The metagenome of bacteria colonizing the human intestine is a set of genes that is almost 150 times greater than the set of host genes. Some of these genes encode enzymes whose functioning significantly expands the number of potential pathways for xenobiotic metabolism. The resulting metabolites can exhibit activity different from that of the parent compound. This can decrease the efficacy of pharmacotherapy as well as induce undesirable and potentially life-threatening side effects. Thus, analysis of the biotransformation of small drug-like compounds mediated by the gut microbiota is an important step in the development of new pharmaceutical agents and repurposing of the approved drugs. In vitro research, the interaction of drug-like compounds with the gut microbiota is a multistep and time-consuming process. Systematic testing of large sets of chemical structures is associated with a number of challenges, including the lack of standardized techniques and significant financial costs to identify the structure of the final metabolites. Estimation of the compounds' ability to be biotransformed by the gut microbiota and prediction of the structures of their metabolites are possible in silico. However, the development of computational approaches is limited by the lack of information about chemical structures metabolized by microbiota enzymes. The aim of this study is to create a database containing information on the metabolism of drug-like compounds by the gut microbiota. We created the data set containing information about 368 structures metabolized and 310 structures not metabolized by the human gut microbiota. The HGMMX database is freely available at https://www.way2drug.com/hgmmx. The information presented will be useful in the development of computational approaches for analyzing the impact of the human microbiota on metabolism of drug-like molecules.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Xenobióticos/química , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Biotransformação , Bases de Dados Factuais
3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768784

RESUMO

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases. Currently, the primary analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although extensive efforts have been made in the computational approach to variant interpretation, there is currently no generally accepted pathogenicity predictor. In this study, we used the sequence-structure-property relationships (SSPR) approach, based on the representation of protein fragments by molecular structural formula. The approach predicts the pathogenic effect of single amino acid substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of activity spectra for drug-like substances. The created SSPR models were compared with traditional bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from 25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid Variants Predictor).


Assuntos
Triagem Neonatal , Software , Recém-Nascido , Criança , Humanos , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Biologia Computacional
4.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675202

RESUMO

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.


Assuntos
Antineoplásicos , Software , Humanos , Teorema de Bayes , Antineoplásicos/farmacologia , Antineoplásicos/química , Prednisona , Linhagem Celular Tumoral
5.
Chem Res Toxicol ; 35(3): 402-411, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35172101

RESUMO

Assessment of structure-activity relationships (SARs) for predicting severe drug-induced liver injury (DILI) is essential since in vivo and in vitro preclinical methods cannot detect many druglike compounds disrupting liver functions. To date, plenty of SAR models for the prediction of DILI have been developed; however, none of them considered the route of drug administration and daily dose, which may introduce significant bias into prediction results. We have created a dataset of 617 drugs with parenteral and oral administration routes and consistent information on DILI severity. We have found a clear relationship between route, dose, and DILI severity. According to SAR, nearly 40% of moderate- and non-DILI-causing drugs would cause severe DILI if they were administered at high oral doses. We have proposed the following approach to predict severe DILI. New compounds recommended to be used at low oral doses (<∼10 mg daily), or parenterally, can be considered not causing severe DILI. DILI for compounds administered at medium oral doses (∼10-100 mg daily; 22.2% of drugs under consideration) can be considered unpredictable because reasonable SAR models were not obtained due to the small size and heterogeneity of the corresponding dataset. The DILI potential of the compounds recommended to be used at high oral doses (more than ∼100 mg daily) can be estimated using SAR modeling. The balanced accuracy of the approach calculated by a 10-fold cross-validation procedure is 0.803. The developed approach can be used to estimate severe DILI for druglike compounds proposed to use at low and high oral doses or parenterally at the early stages of drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Administração Oral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Técnicas In Vitro , Preparações Farmacêuticas/química
6.
J Chem Inf Model ; 61(4): 1683-1690, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33724829

RESUMO

The growing amount of experimental data on chemical objects includes properties of small molecules, results of studies of their interaction with human and animal proteins, and methods of synthesis of organic compounds (OCs). The data obtained can be used to identify the names of OCs automatically, including all possible synonyms and relevant data on the molecular properties and biological activity. Utilization of different synonymic names of chemical compounds allows researchers to increase the completeness of data on their properties available from publications. Enrichment of the data on the names of chemical compounds by information about their possible metabolites can help estimate the biological effects of parent compounds and their metabolites more thoroughly. Therefore, an attempt at automated extraction of the names of parent compounds and their metabolites from the texts is a rather important task. In our study, we aimed at developing a method that provides the extraction of the named entities (NEs) of parent compounds and their metabolites from abstracts of scientific publications. Based on the application of the conditional random fields' algorithm, we extracted the NEs of chemical compounds. We developed a set of rules allowing identification of parent compound NEs and their metabolites in the texts. We evaluated the possibility of extracting the names of potential metabolites based on cosine similarity between strings representing names of parent compounds and all other chemical NEs found in the text. Additionally, we used conditional random fields to fetch the names of parent compounds and their metabolites from the texts based on the corpus of texts labeled manually. Our computational experiments showed that usage of rules in combination with cosine similarity could increase the accuracy of recognition of the names of metabolites compared to the rule-based algorithm and application of a machine-learning algorithm (conditional random fields).


Assuntos
Algoritmos , Proteínas , Animais , Humanos , Aprendizado de Máquina
7.
Int J Mol Sci ; 21(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050610

RESUMO

Most pharmaceutical substances interact with several or even many molecular targets in the organism, determining the complex profiles of their biological activity. Moreover, due to biotransformation in the human body, they form one or several metabolites with different biological activity profiles. Therefore, the development and rational use of novel drugs requires the analysis of their biological activity profiles, taking into account metabolism in the human body. In silico methods are currently widely used for estimating new drug-like compounds' interactions with pharmacological targets and predicting their metabolic transformations. In this study, we consider the estimation of the biological activity profiles of organic compounds, taking into account the action of both the parent molecule and its metabolites in the human body. We used an external dataset that consists of 864 parent compounds with known metabolites. It is shown that the complex assessment of active pharmaceutical ingredients' interactions with the human organism increases the quality of computer-aided estimates. The toxic and adverse effects showed the most significant difference: reaching 0.16 for recall and 0.14 for precision.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Descoberta de Drogas/métodos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Software , Relação Estrutura-Atividade
8.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604797

RESUMO

Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/metabolismo , Mineração de Dados/métodos , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/metabolismo , Anti-Inflamatórios/uso terapêutico , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Bases de Dados Genéticas , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Inflamação , Interferons/genética , Interferons/imunologia , Interleucinas/genética , Interleucinas/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , SARS-CoV-2 , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
9.
J Chem Inf Model ; 59(9): 3635-3644, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31453694

RESUMO

A lot of high quality data on the biological activity of chemical compounds are required throughout the whole drug discovery process: from development of computational models of the structure-activity relationship to experimental testing of lead compounds and their validation in clinics. Currently, a large amount of such data is available from databases, scientific publications, and patents. Biological data are characterized by incompleteness, uncertainty, and low reproducibility. Despite the existence of free and commercially available databases of biological activities of compounds, they usually lack unambiguous information about peculiarities of biological assays. On the other hand, scientific papers are the primary source of new data disclosed to the scientific community for the first time. In this study, we have developed and validated a data-mining approach for extraction of text fragments containing description of bioassays. We have used this approach to evaluate compounds and their biological activity reported in scientific publications. We have found that categorization of papers into relevant and irrelevant may be performed based on the machine-learning analysis of the abstracts. Text fragments extracted from the full texts of publications allow their further partitioning into several classes according to the peculiarities of bioassays. We demonstrate the applicability of our approach to the comparison of the endpoint values of biological activity and cytotoxicity of reference compounds.


Assuntos
Mineração de Dados/métodos , Descoberta de Drogas/métodos , Bases de Dados Factuais , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , PubMed , Inibidores da Transcriptase Reversa/farmacologia
10.
J Chem Inf Model ; 59(11): 4513-4518, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31661960

RESUMO

Discovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required. We describe a web application called AntiBac-Pred aimed to help users in the rational selection of the chemical compounds for experimental studies of antibacterial activity. This application is developed using antibacterial activity data available in ChEMBL and PASS software. It allows users to classify chemical structures of interest into growth inhibitors or noninhibitors of 353 different bacteria strains, including both resistant and nonresistant ones.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Software , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas/métodos , Humanos , Internet
11.
Molecules ; 25(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881687

RESUMO

Despite the achievements of antiretroviral therapy, discovery of new anti-HIV medicines remains an essential task because the existing drugs do not provide a complete cure for the infected patients, exhibit severe adverse effects, and lead to the appearance of resistant strains. To predict the interaction of drug-like compounds with multiple targets for HIV treatment, ligand-based drug design approach is widely applied. In this study, we evaluated the possibilities and limitations of (Q)SAR analysis aimed at the discovery of novel antiretroviral agents inhibiting the vital HIV enzymes. Local (Q)SAR models are based on the analysis of structure-activity relationships for molecules from the same chemical class, which significantly restrict their applicability domain. In contrast, global (Q)SAR models exploit data from heterogeneous sets of drug-like compounds, which allows their application to databases containing diverse structures. We compared the information for HIV-1 integrase, protease and reverse transcriptase inhibitors available in the EBI ChEMBL, NIAID HIV/OI/TB Therapeutics, and Clarivate Analytics Integrity databases as the sources for (Q)SAR training sets. Using the PASS and GUSAR software, we developed and validated a variety of (Q)SAR models, which can be further used for virtual screening of new antiretrovirals in the SAVI library. The developed models are implemented in the freely available web resource AntiHIV-Pred.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/metabolismo , Relação Quantitativa Estrutura-Atividade , Proteínas Virais/antagonistas & inibidores , Fármacos Anti-HIV/química , Bases de Dados como Assunto , HIV-1/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Análise de Regressão , Reprodutibilidade dos Testes , Proteínas Virais/metabolismo
12.
J Chem Inf Model ; 58(1): 8-11, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29206457

RESUMO

Application of structure-activity relationships (SARs) for the prediction of adverse effects of drugs (ADEs) has been reported in many published studies. Training sets for the creation of SAR models are usually based on drug label information which allows for the generation of data sets for many hundreds of drugs. Since many ADEs may not be related to drug consumption, one of the main problems in such studies is the quality of data on drug-ADE pairs obtained from labels. The information on ADEs may be included in three sections of the drug labels: "Boxed warning," "Warnings and Precautions," and "Adverse reactions." The first two sections, especially Boxed warning, usually contain the most frequent and severe ADEs that have either known or probable relationships to drug consumption. Using this information, we have created manually curated data sets for the five most frequent and severe ADEs: myocardial infarction, arrhythmia, cardiac failure, severe hepatotoxicity, and nephrotoxicity, with more than 850 drugs on average for each effect. The corresponding SARs were built with PASS (Prediction of Activity Spectra for Substances) software and had balanced accuracy values of 0.74, 0.7, 0.77, 0.67, and 0.75, respectively. They were implemented in a freely available ADVERPred web service ( http://www.way2drug.com/adverpred/ ), which enables a user to predict five ADEs based on the structural formula of compound. This web service can be applied for estimation of the corresponding ADEs for hits and lead compounds at the early stages of drug discovery.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/instrumentação , Internet , Rotulagem de Medicamentos , Coração/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Valor Preditivo dos Testes , Software , Relação Estrutura-Atividade
13.
J Chem Inf Model ; 57(4): 638-642, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28345905

RESUMO

A new freely available web-application MetaTox ( http://www.way2drug.com/mg ) for prediction of xenobiotic's metabolism and calculation toxicity of metabolites based on the structural formula of chemicals has been developed. MetaTox predicts metabolites, which are formed by nine classes of reactions (aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation). The calculation of probability for generated metabolites is based on analyses of "structure-biotransformation reactions" and "structure-modified atoms" relationships using a Bayesian approach. Prediction of LD50 values is performed by GUSAR software for the parent compound and each of the generated metabolites using quantitative structure-activity relationahip (QSAR) models created for acute rat toxicity with the intravenous type of administration.


Assuntos
Biologia Computacional/métodos , Internet , Xenobióticos/metabolismo , Xenobióticos/toxicidade , Animais , Humanos , Relação Quantitativa Estrutura-Atividade , Software , Xenobióticos/química
14.
J Mol Recognit ; 29(4): 159-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26549790

RESUMO

The exchange of single amino acid residue in protein can substantially affect the specificity of molecular recognition. Many protein families can be divided into the groups based on specificity to recognized ligands. Prediction of group-discriminating residues within the certain family is extremely necessary for theoretical studies, enzyme engineering, drug design, and so on. The most existing methods use the multiple sequence alignment. They have the limitations in prediction accuracy due to the family sequence divergence and ligand-based grouping. We developed a new method SPrOS (Specificity Projection On Sequence) for estimating the specificity of residues to user-defined groups. SPrOS compares the sequence segments from the test protein and training proteins. Contrary to other segment-comparison approaches extracting the string motifs, SPrOS calculates the scores for single positions by the similarity of their surroundings. The method was evaluated on the simulated sequences and real protein families. The high-prediction accuracy was achieved for simulated sequences, in which SPrOS detected specific positions not predicted with the alignment-based method. For bacterial transcription factors (LacI/GalR) clearly divided into functional groups, the predicted specific residues corresponded to the published experimental data. In a more complicated case of protein kinases classified by inhibitor specificity, the positions predicted with high significance were located in ligand-binding areas. As the ligand specificity is not necessary coincided with phylogeny, evolutionary-coupled mutations could disturb the detection of ligand-specific residues. Excluding proximate homologs of the test protein kinase from the training set, we improved the prediction of the ligand-specific residues. The SPrOS is available at http://www.way2drug.com/spros/


Assuntos
Aminoácidos/química , Biologia Computacional/métodos , Família Multigênica , Proteínas/química , Homologia de Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo , Alinhamento de Sequência , Navegador
15.
J Chem Inf Model ; 55(7): 1388-99, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26046311

RESUMO

Large-scale databases are important sources of training sets for various QSAR modeling approaches. Generally, these databases contain information extracted from different sources. This variety of sources can produce inconsistency in the data, defined as sometimes widely diverging activity results for the same compound against the same target. Because such inconsistency can reduce the accuracy of predictive models built from these data, we are addressing the question of how best to use data from publicly and commercially accessible databases to create accurate and predictive QSAR models. We investigate the suitability of commercially and publicly available databases to QSAR modeling of antiviral activity (HIV-1 reverse transcriptase (RT) inhibition). We present several methods for the creation of modeling (i.e., training and test) sets from two, either commercially or freely available, databases: Thomson Reuters Integrity and ChEMBL. We found that the typical predictivities of QSAR models obtained using these different modeling set compilation methods differ significantly from each other. The best results were obtained using training sets compiled for compounds tested using only one method and material (i.e., a specific type of biological assay). Compound sets aggregated by target only typically yielded poorly predictive models. We discuss the possibility of "mix-and-matching" assay data across aggregating databases such as ChEMBL and Integrity and their current severe limitations for this purpose. One of them is the general lack of complete and semantic/computer-parsable descriptions of assay methodology carried by these databases that would allow one to determine mix-and-matchability of result sets at the assay level.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Modelos Estatísticos , Relação Quantitativa Estrutura-Atividade , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Algoritmos , Descoberta de Drogas , Farmacorresistência Viral , HIV-1/efeitos dos fármacos
16.
Chem Res Toxicol ; 27(7): 1263-81, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24920530

RESUMO

Drug-induced myocardial infarction (DIMI) is one of the most serious adverse drug effects that often lead to death. Therefore, the identification of DIMI at the early stages of drug development is essential. For this purpose, the in vitro testing and in silico prediction of interactions between drug-like substances and various off-target proteins associated with serious adverse drug reactions are performed. However, only a few DIMI-related protein targets are currently known. We developed a novel in silico approach for the identification of DIMI-related protein targets. This approach is based on the computational prediction of drug-target interaction profiles based on information from approximately 1738 human targets and 828 drugs, including 254 drugs that cause myocardial infarction. Through a statistical analysis, we revealed the 155 most significant associations between protein targets and DIMI. Because not all of the identified associations may lead to DIMI, an analysis of the biological functions of these proteins was performed. The Random Walk with Restart algorithm based on a functional linkage gene network was used to prioritize the revealed DIMI-related protein targets according to the functional similarity between their genes and known genes associated with myocardial infarction. The biological processes associated with the 155 selected protein targets were determined by gene ontology and pathway enrichment analysis. This analysis indicated that most of the processes leading to DIMI are associated with atherosclerosis. The revealed proteins were manually annotated with biological processes using functional and disease-related data extracted from the literature. Finally, the 155 protein targets were classified into three categories of confidence: (1) high (the protein targets are known to be involved in DIMI via atherosclerotic progression; 50 targets), (2) medium (the proteins are known to participate in biological processes related with DIMI; 65 targets), and (3) low (the proteins are indirectly involved in DIMI pathogenesis; 40 proteins).


Assuntos
Aterosclerose/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Infarto do Miocárdio/induzido quimicamente , Proteínas/metabolismo , Algoritmos , Aterosclerose/metabolismo , Simulação por Computador , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Infarto do Miocárdio/metabolismo
17.
J Chem Inf Model ; 54(2): 498-507, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24417355

RESUMO

A new ligand-based method for the prediction of sites of metabolism (SOMs) for xenobiotics has been developed on the basis of the LMNA (labeled multilevel neighborhoods of atom) descriptors and the PASS (prediction of activity spectra for substances) algorithm and applied to predict the SOMs of the 1A2, 2C9, 2C19, 2D6, and 3A4 isoforms of cytochrome P450. An average IAP (invariant accuracy of prediction) of SOMs calculated by the leave-one-out cross-validation procedure was 0.89 for the developed method. The external validation was made with evaluation sets containing data on biotransformations for 57 cardiovascular drugs. An average IAP of regioselectivity for evaluation sets was 0.83. It was shown that the proposed method exceeds accuracy of SOM prediction by RS-Predictor for CYP 1A2, 2D6, 2C9, 2C19, and 3A4 and is comparable to or better than SMARTCyp for CYP 2C9 and 2D6.


Assuntos
Algoritmos , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Sítios de Ligação , Fármacos Cardiovasculares/metabolismo
18.
Comput Biol Chem ; 110: 108061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574417

RESUMO

Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.


Assuntos
Antivirais , Inibidores de Proteases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligantes , Antivirais/química , Antivirais/farmacologia , Algoritmos , Proteases Virais/química , Proteases Virais/metabolismo
19.
Mol Inform ; : e202400032, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979651

RESUMO

The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.0 web application, which allows predicting DIGEP and potential drug targets by structural formula of drug-like compounds. It is based on the combined use of structure-activity relationships (SARs) and network analysis. SAR models were created using PASS (Prediction of Activity Spectra for Substances) technology for data from the Comparative Toxicogenomics Database (CTD), the Connectivity Map (CMap) for the prediction of DIGEP, and PubChem and ChEMBL for the prediction of molecular mechanisms of action (MoA). Using only the structural formula of a compound, the user can obtain information on potential gene expression changes in several cell lines and drug targets, which are potential master regulators responsible for the observed DIGEP. The mean accuracy of prediction calculated by leave-one-out cross validation was 86.5 % for 13377 genes and 94.8 % for 2932 proteins (CTD data), and it was 97.9 % for 2170 MoAs. SAR models (mean accuracy-87.5 %) were also created for CMap data given on MCF7, PC3, and HL60 cell lines with different threshold values for the logarithm of fold changes: 0.5, 0.7, 1, 1.5, and 2. Additionally, the data on pathways (KEGG, Reactome), biological processes of Gene Ontology, and diseases (DisGeNet) enriched by the predicted genes, together with the estimation of target-master regulators based on OmniPath data, is also provided. DIGEP-Pred 2.0 web application is freely available at https://www.way2drug.com/digep-pred.

20.
Viruses ; 16(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39066293

RESUMO

Drug resistance of pathogens, including viruses, is one of the reasons for decreased efficacy of therapy. Considering the impact of HIV type 1 (HIV-1) on the development of progressive immune dysfunction and the rapid development of drug resistance, the analysis of HIV-1 resistance is of high significance. Currently, a substantial amount of data has been accumulated on HIV-1 drug resistance that can be used to build both qualitative and quantitative models of HIV-1 drug resistance. Quantitative models of drug resistance can enrich the information about the efficacy of a particular drug in the scheme of antiretroviral therapy. In our study, we investigated the possibility of developing models for quantitative prediction of HIV-1 resistance to eight protease inhibitors based on the analysis of amino acid sequences of HIV-1 protease for 900 virus variants. We developed random forest regression (RFR), support vector regression (SVR), and self-consistent regression (SCR) models using binary vectors containing values from 0 or 1, depending on the presence of a specific peptide fragment in each amino acid sequence as independent variables, while fold ratio, reflecting the level of resistance, was the predicted variable. The SVR and SCR models showed the highest predictive performances. The models built demonstrate reasonable performances for eight out of nine (R2 varied from 0.828 to 0.909) protease inhibitors, while R2 for predicting tipranavir fold ratio was lower (R2 was 0.642). We believe that the developed approach can be applied to evaluate drug resistance of molecular targets of other viruses where appropriate experimental data are available.


Assuntos
Farmacorresistência Viral , Infecções por HIV , Inibidores da Protease de HIV , Protease de HIV , HIV-1 , HIV-1/efeitos dos fármacos , HIV-1/genética , Farmacorresistência Viral/genética , Humanos , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Protease de HIV/genética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Sequência de Aminoácidos , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA