Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771111

RESUMO

Achieving the best possible outcome for the therapy is the main goal of a medicine. Therefore, nanocarriers and co-delivery strategies were invented to meet this need, as they can benefit many diseases. This approach was applied specifically for cancer treatment, with some success. However, these strategies may benefit many other clinical issues. Skin is the largest and most exposed organ of the human body, with physiological and psychological properties. Due to its exposition and importance, it is not difficult to understand how many skin diseases may impact on patients' lives, representing an important burden for society. Thus, this review aims to summarize the state of the art in research concerning nanocarriers and co-delivery strategies for topical agents' applications targeting skin diseases. The challenge for the medicine of the future is to deliver the drug with spatial and temporal control. Therefore, the co-encapsulation of drugs and the appropriate form of administration for them are so important and remain as unmet needs.


Assuntos
Nanopartículas , Dermatopatias , Humanos , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Absorção Cutânea , Dermatopatias/metabolismo , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/metabolismo , Administração Cutânea , Administração Tópica
2.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072765

RESUMO

Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.


Assuntos
Anti-Infecciosos/farmacologia , Doenças Transmissíveis/tratamento farmacológico , Dendrímeros/química , Peptídeos/química , Polímeros/química , Animais , Fármacos Anti-HIV/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biotecnologia , Catálise , Meios de Contraste , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , Humanos , Infectologia/tendências , Imageamento por Ressonância Magnética , Camundongos , Nanotecnologia , Polipropilenos/química , SARS-CoV-2 , Estereoisomerismo , Tomografia Computadorizada por Raios X/tendências , Viroses/tratamento farmacológico , Tratamento Farmacológico da COVID-19
3.
Mol Pharm ; 17(5): 1638-1647, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32233497

RESUMO

Targeted delivery of chemotherapeutics to tumors has the potential to reach a high dose at the tumor while minimizing systemic exposure. Incorporation of antibody within a micellar platform represents a drug delivery system for tumor-targeted delivery of antitumor agents. Such modified immunomicelles can result in an increased accumulation of antitumor agents and enhanced cytotoxicity toward cancer cells. Here, mixed dendrimer micelles (MDM) composed of PEG2k-DOPE-conjugated generation 4 polyamidoamine dendrimer G4-PAMAM-PEG2k-DOPE and PEG5k-DOPE were coloaded with doxorubicin and siMDR-1. This formulation was further modified with monoclonal antibodies 2C5 with nucleosome-restricted specificity that effectively recognized cancer cells via the cell-surface-bound nucleosomes. Micelles with attached 2C5 antibodies significantly enhanced cellular association and tumor killing in both monolayer and spheroid tumor models as well as in vivo in experimental animals compared to the nontargeted formulations.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/administração & dosagem , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias Experimentais/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Composição de Medicamentos , Feminino , Humanos , Camundongos , Neoplasias Experimentais/patologia , Esferoides Celulares , Distribuição Tecidual
4.
Nanomedicine ; 28: 102228, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485321

RESUMO

Folic acid is often used for active targeting of tumor cells to enhance therapeutic outcomes. Here, folic acid was conjugated with chitosan and folate-conjugated chitosan-lipid hybrid nanoparticles were prepared by ionic gelation method using anionic lipid. These nanoparticles were in size range of 200 to 400 nm with spherical shape. In vitro drug release data suggested a sustained release of cisplatin. The therapeutic efficacy of the folate-conjugated hybrid nanoparticles was evaluated in SK-OV-3, A2780 and MCF-7 cancer cell lines. A significant increase in cytotoxicity was observed with folate targeted LPHNPs compared to non-targeted LPHNPs. Significantly enhanced cellular uptake and cell cycle arrest resulting from folate-targeted nanoparticles were confirmed using fluorescence microscopy and flow cytometry. The therapeutic efficacy and tumor penetration were further evaluated in 3D spheroid tumor models. These studies suggest that folate-conjugated lipid-chitosan nanoparticles could enhance therapeutic activity and may represent a promising platform for active targeting of tumor cells.


Assuntos
Quitosana/química , Cisplatino/química , Ácido Fólico/química , Nanopartículas/química , Polímeros/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Citometria de Fluxo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Esferoides Celulares/efeitos dos fármacos
5.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875934

RESUMO

Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Cálculos da Dosagem de Medicamento , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Tamanho da Partícula , Polímeros/química , Polímeros/farmacologia , Polímeros/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
6.
Molecules ; 23(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200272

RESUMO

A series of caffeic acid derivatives were synthesized via a modified Wittig reaction which is a very important tool in organic chemistry for the construction of unsaturated carbon⁻carbon bonds. All reactions were performed in water medium at 90 °C. The aqueous Wittig reaction worked best when one unprotected hydroxyl group was present in the phenyl ring. The olefinations in the aqueous conditions were also conducted with good yields in the presence of two unprotected hydroxyl groups. When the number of the hydroxyl groups was increased to three, the reaction yields were worse, and the derivatives 12, 13, and 18 were obtained with 74%, 37%, and 70% yields, respectively. Nevertheless, the Wittig reaction using water as the essential medium is an elegant one-pot synthesis and a greener method, which can be a safe alternative for implementation in organic chemistry. The obtained compounds were tested for their antioxidant activity, and 12, 13, and 18 showed the highest activities. Moreover, all synthesized compounds displayed no cytotoxicity, and can therefore be used in the pharmaceutical or cosmetic industry.


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/farmacologia , Antioxidantes/química , Ácidos Cafeicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos , Humanos , Estrutura Molecular , Oxirredução/efeitos dos fármacos
7.
Pharm Res ; 34(6): 1264-1275, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321609

RESUMO

PURPOSE: The effect of existing anti-cancer therapies is based mainly on the stimulation of apoptosis in cancer cells. Here, we have demonstrated the ability of a catalytically-reactive nanoparticle-based complex of cytochrome c with cardiolipin (Cyt-CL) to induce the apoptosis and killing of cancer cells in a monolayer cell culture. METHODS: Cyt-CL nanoparticles were prepared by complexing CytC with different molar excesses of CL. Following characterization, cytotoxicity and apoptosis inducing effects of nanoparticles were investigated. In an attempt to identify the anticancer activity mechanism of Cyt-CL, pseudo-lipoxygenase and lipoperoxidase reaction kinetics were measured by chemiluminescence. RESULTS: Using chemiluminescence, we have demonstrated that the Cyt-CL complex produces lipoperoxide radicals in two reactions: by decomposition of lipid hydroperoxides, and by lipid peroxidation under the action of H2O2. Antioxidants inhibited the formation of lipid radicals. Cyt-CL nanoparticles, but not the CytC alone, dramatically enhanced the level of apoptosis and cell death in two cell lines: drug-sensitive (A2780) and doxorubicin-resistant (A2780-Adr). The proposed mechanism of the cytotoxic action of Cyt-CL involves either penetration through the cytoplasm and outer mitochondrial membrane and catalysis of lipid peroxidation reactions at the inner mitochondrial membrane, or/and activation of lipid peroxidation within the cytoplasmic membrane. CONCLUSIONS: Here we propose a new type of anticancer nano-formulation, with an action based on the catalytic action of Cyt-CL nanoparticles on the cell membrane and and/or mitochondrial membranes that results in lipid peroxidation reactions, which give rise to activation of apoptosis in cancer cells, including multidrug resistant cells.


Assuntos
Antineoplásicos/farmacologia , Cardiolipinas/farmacologia , Citocromos c/farmacologia , Nanopartículas/química , Antineoplásicos/química , Apoptose , Cardiolipinas/química , Catálise , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Citocromos c/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Composição de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , Peroxidação de Lipídeos
8.
Crit Rev Oncol Hematol ; 197: 104351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615873

RESUMO

Breast cancer is potentially a lethal disease and a leading cause of death in women. Chemotherapy and radiotherapy are the most frequently used treatment options. Drug resistance in advanced breast cancer limits the therapeutic output of treatment. The leading cause of resistance in breast cancer is endocrine and hormonal imbalance, particularly in triple negative and HER2 positive breast cancers. The efflux of drugs due to p-gp's activity is another leading cause of resistance. Breast cancer resistant protein also contributes significantly. Strategies used to combat resistance include the use of nanoparticles to target drug delivery by co-delivery of chemotherapeutic drugs and genes (siRNA and miRNA) that help to down-regulate genes causing resistance. The siRNA is specific and effectively silences p-gp and other proteins causing resistance. The use of chemosensitizers is also effective in overcoming resistance. Chemo-sensitizers sensitize cancer cells to the effects of chemotherapeutic drugs. Novel anti-neoplastic agents such as antibody-drug conjugates and mesenchymal stem cells are also effective tools used to improve the therapeutic response in breast cancer. Similarly, combination of photo/thermal ablation with chemotherapy can act to overcome breast cancer resistance. In this review, we focus on the mechanism of breast cancer resistance and the nanoparticle-based strategies used to combat resistance in breast cancer.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Nanopartículas , Sistemas de Liberação de Medicamentos , Animais
9.
Drug Deliv Transl Res ; 14(8): 2171-2185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38507033

RESUMO

Combination therapy with small interfering RNA (siRNA) and chemotherapeutic drug is proven to be effective in downregulating cancer resistance proteins, such as P-glycoprotein (P-gp). These proteins are involved in multidrug resistance (MDR) of tumors. A targeted formulation capable of delivering siRNA and chemotherapeutic drug will not only downregulate P-gp but also increase the concentration of the chemotherapeutic drug at the site of tumor thereby increasing the therapeutic effect and lowering the systemic exposure. In this study, monoclonal antibody 2C5-modified dendrimer-based micelles were used to co-deliver siRNA and doxorubicin (DOX) to the tumor site in both male and female xenograft mouse model. The nucleosome-specific 2C5 antibody recognizes the cancer cells via the cell-surface bound nucleosomes. The ability of ability of the 2C5-modified formulation to affect the metastasis of highly aggressive triple negative breast cancer cell migration in (MDA-MB-231) was assessed by a wound healing. Further, the therapeutic efficacy of the formulation was assessed by measuring the tumor volume progression in which the 2C5-modified nanoparticle group had a similar tumor volume to the free drug group at the end of the study, although a 50% increase in DOX concentrations in blood was observed after the last dose of nanoparticle. The free drug group on the other hand showed body weight reduction as well as the visible irritation around the injection spot. The treatment group with 2C5-modified micelles has shown to be safe at the current dose of DOX and siRNA. Furthermore, the siRNA mediated P-gp downregualtion was studied using western blotting assay. We observed a 29% reduction of P-gp levels in both males and females with respect to the control (BHG). We also conclude that the dose of DOX and siRNA should be further optimized to have a better efficacy in a metastatic tumor model, which will be the subject of our future studies.


Assuntos
Dendrímeros , Doxorrubicina , Micelas , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Dendrímeros/química , Dendrímeros/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , RNA Interferente Pequeno/administração & dosagem , Feminino , Humanos , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Nus , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Movimento Celular/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
10.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37513882

RESUMO

Breast cancer is the most frequently diagnosed cancer among women. Breast cancer is also the key reason for worldwide cancer-related deaths among women. The application of small interfering RNA (siRNA)-based drugs to combat breast cancer requires effective gene silencing in tumor cells. To overcome the challenges of drug delivery to tumors, various nanosystems for siRNA delivery, including lipid-based nanoparticles that protect siRNA from degradation for delivery to cancer cells have been developed. These nanosystems have shown great potential for efficient and targeted siRNA delivery to breast cancer cells. Lipid-based nanosystems remain promising as siRNA drug delivery carriers for effective and safe cancer therapy including breast cancer. Lipid nanoparticles (LNPs) encapsulating siRNA enable efficient and specific silencing of oncogenes in breast tumors. This review discusses a variety of lipid-based nanosystems including cationic lipids, sterols, phospholipids, PEG-lipid conjugates, ionizable liposomes, exosomes for effective siRNA drug delivery to breast tumors, and the clinical translation of lipid-based siRNA nanosystems for solid tumors.

11.
J Control Release ; 356: 306-315, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878321

RESUMO

With the passage of years and the progress of research on ribonucleic acids, the range of forms in which these molecules have been observed grows. One of them, discovered relatively recently, is circular RNA - covalently closed circles (circRNA). In recent years, there has been a huge increase in the interest of researchers in this group of molecules. It entailed a significant increase in the state of knowledge about them, which in turn caused a dramatic change in their perception. Rather than seeing circular RNAs as curiosities that represent a minor information noise in a cell or a result of RNA misprocessing, they came to be regarded as a common, essential, and potentially extremely useful group of molecules. Nevertheless, the current state of the art of circRNA is full of white cards. A lot of valuable information has been obtained from high-throughput methods to study whole transcriptomes, but many issues related to circular RNAs still need to be clarified. Presumably, each answer obtained will raise several new questions. However, circRNAs have a wealth of potential applications, including therapeutic applications.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA/genética , Neoplasias/genética , Neoplasias/terapia
12.
Int J Nanomedicine ; 18: 5265-5287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746050

RESUMO

Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.


Assuntos
Armadilhas Extracelulares , Humanos , Neutrófilos , Inflamação/tratamento farmacológico , Transporte Biológico , Histonas
13.
J Control Release ; 354: 109-119, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596341

RESUMO

Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.


Assuntos
Armadilhas Extracelulares , Armadilhas Extracelulares/metabolismo , Micelas , Desoxirribonuclease I/metabolismo , Neutrófilos , Anticorpos/metabolismo
14.
J Pers Med ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36983571

RESUMO

The innovative development of nanomedicine has promised effective treatment options compared to the standard therapeutics for cancer therapy. However, the efficiency of EPR-targeted nanodrugs is not always pleasing as it is strongly prejudiced by the heterogeneity of the enhanced permeability and retention effect (EPR). Targeting the dynamics of the EPR effect and improvement of the therapeutic effects of nanotherapeutics by using EPR enhancers is a vital approach to developing cancer therapy. Inadequate data on the efficacy of EPR in humans hampers the clinical translation of cancer drugs. Molecular targeting, physical amendment, or physiological renovation of the tumor microenvironment (TME) are crucial approaches for improving the EPR effect. Advanced imaging technologies for the visualization of EPR-induced nanomedicine distribution in tumors, and the use of better animal models, are necessary to enhance the EPR effect. This review discusses strategies to enhance EPR effect-based drug delivery approaches for cancer therapy and imaging technologies for the diagnosis of EPR effects. The effort of studying the EPR effect is beneficial, as some of the advanced nanomedicine-based EPR-enhancing approaches are currently undergoing clinical trials, which may be helpful to improve EPR-induced drug delivery and translation to clinics.

15.
Cancers (Basel) ; 15(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37046777

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood-brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.

16.
Res Sq ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168301

RESUMO

A combination therapy with small interfering RNA (siRNA) and chemotherapeutic drug is proven to be effective in downregulating the cancer resistance proteins, such as P-glycoprotein (P-gp). These proteins are involved in multidrug resistance (MDR) of tumors. MDR lowers the efficacy of chemotherapy and even renders it ineffective. A possible strategy to counteract the resistance is by downregulating the resistance proteins using siRNA. A targeted formulation capable of delivering siRNA and chemotherapeutic drug will not only downregulate P-gp but also increase the concentration of the chemotherapeutic drug at the site of tumor thereby increasing the therapeutic effect and lowering the systemic exposure. In this study, monoclonal antibody 2C5-modified dendrimer-based micelles were used to co-deliver siRNA and doxorubicin (DOX) to the tumor site in both male and female xenograft mice model. The nucleosome-specific 2C5 antibody recognizes the cancer cells via the cell-surface bound nucleosomes. The ability of the 2C5-modified formulation in affecting the metastasis of highly aggressive triple negative breast cancer (MDA-MB-231) was assessed via wound healing assay where the 2C5-modified formulation halved the rate at which the cells were migrating. Further, the therapeutic efficacy of the formulation was assessed by measuring the tumor volume progression where the 2C5-modified nanoparticle group had a similar tumor volume to the free drug group at the end of the study, although a 50% increase in DOX concentrations in blood was observed after the last dose of nanoparticle. Despite a higher DOX concentration and residence time we did not observe any systemic toxicities in the nanoparticle groups. The free drug group on the other hand showed body weight reduction as well as the visible irritation around the injection spot. The treatment group with 2C5-modified micelles has shown to be safe at the current dose of DOX and siRNA.The ability of 2C5 antibody-functionalized nanoparticles in delivering cargo to the tumor site in vivo was evaluated for DOX using ex vivo imaging and siRNA by western blot study to evaluate the levels of P-gp. Furthermore, the siRNA mediated P-gp downregualtion was studied using western blotting assay. We observed a 29% reduction of P-gp levels in both males and females with respect to the control (BHG). We also conclude that the dose of DOX and siRNA should be further optimized to have a better efficacy in a metastatic tumor model, which will be the subject of our future studies.

17.
PLoS One ; 18(10): e0293141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883367

RESUMO

PURPOSE: To characterize intratumoral immune cell trafficking in ablated and synchronous tumors following combined radiofrequency ablation (RFA) and systemic liposomal granulocyte-macrophage colony stimulation factor (lip-GM-CSF). METHODS: Phase I, 72 rats with single subcutaneous R3230 adenocarcinoma were randomized to 6 groups: a) sham; b&c) free or liposomal GM-CSF alone; d) RFA alone; or e&f) combined with blank liposomes or lip-GM-CSF. Animals were sacrificed 3 and 7 days post-RFA. Outcomes included immunohistochemistry of dendritic cells (DCs), M1 and M2 macrophages, T-helper cells (Th1) (CD4+), cytotoxic T- lymphocytes (CTL) (CD8+), T-regulator cells (T-reg) (FoxP3+) and Fas Ligand activated CTLs (Fas-L+) in the periablational rim and untreated index tumor. M1/M2, CD4+/CD8+ and CD8+/FoxP3+ ratios were calculated. Phase II, 40 rats with double tumors were randomized to 4 groups: a) sham, b) RFA, c) RFA-BL and d) RFA-lip-GM-CSF. Synchronous untreated tumors collected at 7d were analyzed similarly. RESULTS: RFA-lip-GMCSF increased periablational M1, CTL and CD8+/FoxP3+ ratio at 3 and 7d, and activated CTLs 7d post-RFA (p<0.05). RFA-lip-GMSCF also increased M2, T-reg, and reduced CD4+/CD8+ 3 and 7d post-RFA respectively (p<0.05). In untreated index tumor, RFA-lip-GMCSF improved DCs, M1, CTLs and activated CTL 7d post-RFA (p<0.05). Furthermore, RFA-lip-GMSCF increased M2 at 3 and 7d, and T-reg 7d post-RFA (p<0.05). In synchronous tumors, RFA-BL and RFA-lip-GM-CSF improved DC, Th1 and CTL infiltration 7d post-RFA. CONCLUSION: Systemic liposomal GM-CSF combined with RFA improves intratumoral immune cell trafficking, specifically populations initiating (DC, M1) and executing (CTL, FasL+) anti-tumor immunity. Moreover, liposomes influence synchronous untreated metastases increasing Th1, CTL and DCs infiltration.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Primárias Múltiplas , Animais , Ratos , Células Dendríticas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead , Granulócitos , Lipossomos , Macrófagos
18.
Pharmaceutics ; 14(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890364

RESUMO

Multidrug resistance (MDR) observed in tumors significantly hinders the efficacy of chemotherapy. Downregulation of efflux proteins, such as P-glycoprotein (P-gp), using small interfering RNA (siRNA) can be an effective way to minimize the resistance in tumors. In this study, monoclonal antibody 2C5 (mAb 2C5)-PEG7k-DOPE conjugates were post-inserted into the mixed dendrimer micelles containing generation 4 (G4) polyamidoamine (PAMAM)-PEG2k-DOPE and PEG5k-DOPE. The inherent amphiphilic nature of DOPE conjugates causes the copolymers to self-assemble to form a micelle, which can encapsulate hydrophobic chemotherapeutic drugs in its core. The siRNA electrostatically binds to the cationic charges on the G4 PAMAM dendrimer. The tumor-specific mAb 2C5 on the surface of these nano-preparations resulted in improved tumor targeting. This active targeting to tumors can cause increase in the drug and siRNA accumulation at the tumor site, and thereby minimizing the off-target effects. The micelles were shown to have higher cellular association and effectiveness in vitro. The immunomicelle preparation was also tested for cytotoxicity in breast (MDA-MB-231) and ovarian (SKOV-3TR) MDR cancer cell lines.

19.
Int J Nanomedicine ; 17: 1851-1864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502235

RESUMO

Nano silver is one of the most widely used engineering nanomaterials with antimicrobial activity against bacteria, fungi, and viruses. However, the widespread application of nano silver preparations in daily life raises concerns about public health. Although several review articles have described the toxicity of nano silver to specific major organs, an updated comprehensive review that clearly and systematically outlines the harmful effects of nano silver is lacking. This review begins with the routes of exposure to nano silver and its distribution in vivo. The toxic reactions are then discussed on three levels, from the organ to the cellular and subcellular levels. This review also provides new insights on adjusting the toxicity of nano silver by changing their size and surface functionalization and their combination with other materials to form a composite formulation. Finally, future development, challenges, and research directions are discussed.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Bactérias , Nanopartículas Metálicas/toxicidade
20.
J Control Release ; 341: 431-442, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838607

RESUMO

Achievement of a high dose of drug in the tumor while minimizing its systemic side effects is one of the important features of an improved drug delivery system. Thus, developing responsive carriers for site-specific delivery of chemotherapeutic agents has become a main goal of research efforts. One of the known hallmarks of cancerous tumors is hypoxia, which offers a target for selective drug delivery. The stimuli-sensitive micellar system developed by us, (PEG-azobenzene-PEI-DOPE (PAPD) has proven to be effective in vitro. The proposed construct developed, PAPD, contains an azobenzene group as a hypoxia-sensitive moiety that triggers the shedding of the PEG layer from the nanoparticle surface under conditions of hypoxia to improve cellular uptake. Using microfluidics, we show significantly improved cellular association and penetration under hypoxia in both single cells and in a 3D tumor model. Employing an in vivo model, we demonstrate slower tumor growth that did not induce systemic side effects, including weight loss in an experimental animal model, when compared to the free drug treatment. This complex-in-nature but simple-in-design system for the simultaneous delivery of siRNA to silence the P-glycoprotein and doxorubicin with active tumor targeting and proven therapeutic efficacy represents a universal platform for the delivery of other hydrophobic chemotherapeutic agents and siRNA molecules which can be further modified.


Assuntos
Doxorrubicina , Hipóxia , Animais , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Micelas , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA