Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(14): 3870-3873, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008729

RESUMO

Intensity modulators are fundamental components for integrated photonics. From near-infrared (NIR) to visible spectral ranges, they find applications in optical communication and quantum technologies. In particular, they are required for the control and manipulation of atomic systems such as atomic clocks and quantum computers. Typical integrated electro-optic modulators operating at these wavelengths show high bandwidth and low-voltage operation, but their extinction ratios are moderate. Here we present an integrated thin-film lithium niobate electro-optic (EO) modulator operating in the C-band, which uses a subsequent periodically poled waveguide to convert the modulated signal from 1536 to 768 nm using the second-harmonic (SH) generation. We demonstrate that the upconverted signal retains the characteristics of the modulated input signal, reaching a measured high bandwidth of 35 GHz. Due to the nature of the nonlinear process, it exhibits, with respect to the fundamental signal, a doubled extinction ratio of 46 dB, which is the highest, to the best of our knowledge, recorded for near-infrared light on this platform.

2.
Nat Commun ; 15(1): 2330, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485996

RESUMO

Miniaturised optical spectrometers are attractive due to their small footprint, low weight, robustness and stability even in harsh environments such as space or industrial facilities. We report on a stationary-wave integrated Fourier-transform spectrometer featuring a measured optical bandwidth of 325 nm and a theoretical spectral resolution of 1.2 nm. We fabricate and test on lithium niobate-on-insulator to take full advantage of the platform, namely electro-optic modulation, broad transparency range and the low optical loss achieved thanks to matured fabrication techniques. We use the electro-optic effect and develop innovative layouts to overcome the undersampling limitations and improve the spectral resolution, thus providing a framework to enhance the performance of all devices sharing the same working principle. With our work, we add another important element to the portfolio of integrated lithium-niobate optical devices as our spectrometer can be combined with multiple other building blocks to realise functional, monolithic and compact photonic integrated circuits.

3.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630973

RESUMO

High-contrast gratings (HCG) are an excellent candidate for label-free detection of various kinds of biomarkers because they exhibit sharp and sensitive optical resonances. In this work, we experimentally show the performance of pedestal HCG (PHCG), which is significantly enhanced in comparison with that of conventional HCG. PCHGs were found to provide a 11.2% improvement in bulk refractive index sensitivity, from 482 nm/RIU for the conventional design to 536 nm/RIU. The observed resonance was narrower, resulting in a higher Q-factor and figure of merit. By depositing Al2O3, HfO2, and TiO2 of different thicknesses as model analyte layers, surface sensitivity values were estimated to be 10.5% better for PHCG. To evaluate the operation of the sensor in solution, avidin was employed as a model analyte. For avidin detection, the surface of the HCG was first silanized and subsequently functionalized with biotin, which is well known for its ability to bind selectively to avidin. A consistent red shift was observed with the addition of each of the functional layers, and the analysis of the spectral shift for various concentrations of avidin made it possible to calculate the limit of detection (LoD) and limit of quantification (LoQ) for the structures. PHCG showed a LoD of 2.1 ng/mL and LoQ of 85 ng/mL, significantly better than the values 3.2 ng/mL and 213 ng/mL respectively, obtained with the conventional HCG. These results demonstrate that the proposed PHCG have great potential for biosensing applications, particularly for detecting and quantifying low analyte concentrations.

4.
Bioinform Adv ; 2(1): vbac092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699399

RESUMO

Motivation: Recently, several computational modeling approaches, such as agent-based models, have been applied to study the interaction dynamics between immune and tumor cells in human cancer. However, each tumor is characterized by a specific and unique tumor microenvironment, emphasizing the need for specialized and personalized studies of each cancer scenario. Results: We present MAST, a hybrid Multi-Agent Spatio-Temporal model which can be informed using a data-driven approach to simulate unique tumor subtypes and tumor-immune dynamics starting from high-throughput sequencing data. It captures essential components of the tumor microenvironment by coupling a discrete agent-based model with a continuous partial differential equations-based model.The application to real data of human colorectal cancer tissue investigating the spatio-temporal evolution and emergent properties of four simulated human colorectal cancer subtypes, along with their agreement with current biological knowledge of tumors and clinical outcome endpoints in a patient cohort, endorse the validity of our approach. Availability and implementation: MAST, implemented in Python language, is freely available with an open-source license through GitLab (https://gitlab.com/sysbiobig/mast), and a Docker image is provided to ease its deployment. The submitted software version and test data are available in Zenodo at https://dx.doi.org/10.5281/zenodo.7267745. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA