Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neural Comput ; 35(12): 1881-1909, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37844326

RESUMO

Backpropagation has rapidly become the workhorse credit assignment algorithm for modern deep learning methods. Recently, modified forms of predictive coding (PC), an algorithm with origins in computational neuroscience, have been shown to result in approximately or exactly equal parameter updates to those under backpropagation. Due to this connection, it has been suggested that PC can act as an alternative to backpropagation with desirable properties that may facilitate implementation in neuromorphic systems. Here, we explore these claims using the different contemporary PC variants proposed in the literature. We obtain time complexity bounds for these PC variants, which we show are lower bounded by backpropagation. We also present key properties of these variants that have implications for neurobiological plausibility and their interpretations, particularly from the perspective of standard PC as a variational Bayes algorithm for latent probabilistic models. Our findings shed new light on the connection between the two learning frameworks and suggest that in its current forms, PC may have more limited potential as a direct replacement of backpropagation than previously envisioned.

2.
PLoS Comput Biol ; 18(7): e1010223, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797365

RESUMO

Human experience of time exhibits systematic, context-dependent deviations from clock time; for example, time is experienced differently at work than on holiday. Here we test the proposal that differences from clock time in subjective experience of time arise because time estimates are constructed by accumulating the same quantity that guides perception: salient events. Healthy human participants watched naturalistic, silent videos of up to 24 seconds in duration and estimated their duration while fMRI was acquired. We were able to reconstruct trial-by-trial biases in participants' duration reports, which reflect subjective experience of duration, purely from salient events in their visual cortex BOLD activity. By contrast, salient events in neither of two control regions-auditory and somatosensory cortex-were predictive of duration biases. These results held despite being able to (trivially) predict clock time from all three brain areas. Our results reveal that the information arising during perceptual processing of a dynamic environment provides a sufficient basis for reconstructing human subjective time duration.


Assuntos
Córtex Visual , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Tempo
3.
Neural Comput ; 34(7): 1501-1544, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35671462

RESUMO

Human perception and experience of time are strongly influenced by ongoing stimulation, memory of past experiences, and required task context. When paying attention to time, time experience seems to expand; when distracted, it seems to contract. When considering time based on memory, the experience may be different than what is in the moment, exemplified by sayings like "time flies when you're having fun." Experience of time also depends on the content of perceptual experience-rapidly changing or complex perceptual scenes seem longer in duration than less dynamic ones. The complexity of interactions among attention, memory, and perceptual stimulation is a likely reason that an overarching theory of time perception has been difficult to achieve. Here, we introduce a model of perceptual processing and episodic memory that makes use of hierarchical predictive coding, short-term plasticity, spatiotemporal attention, and episodic memory formation and recall, and apply this model to the problem of human time perception. In an experiment with approximately 13,000 human participants, we investigated the effects of memory, cognitive load, and stimulus content on duration reports of dynamic natural scenes up to about 1 minute long. Using our model to generate duration estimates, we compared human and model performance. Model-based estimates replicated key qualitative biases, including differences by cognitive load (attention), scene type (stimulation), and whether the judgment was made based on current or remembered experience (memory). Our work provides a comprehensive model of human time perception and a foundation for exploring the computational basis of episodic memory within a hierarchical predictive coding framework.


Assuntos
Memória Episódica , Percepção do Tempo , Humanos , Rememoração Mental , Tempo
4.
Nat Commun ; 12(1): 2020, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795665

RESUMO

Changes of Mind are a striking example of our ability to flexibly reverse decisions and change our own actions. Previous studies largely focused on Changes of Mind in decisions about perceptual information. Here we report reversals of decisions that require integrating multiple classes of information: 1) Perceptual evidence, 2) higher-order, voluntary intentions, and 3) motor costs. In an adapted version of the random-dot motion task, participants moved to a target that matched both the external (exogenous) evidence about dot-motion direction and a preceding internally-generated (endogenous) intention about which colour to paint the dots. Movement trajectories revealed whether and when participants changed their mind about the dot-motion direction, or additionally changed their mind about which colour to choose. Our results show that decision reversals about colour intentions are less frequent in participants with stronger intentions (Exp. 1) and when motor costs of intention pursuit are lower (Exp. 2). We further show that these findings can be explained by a hierarchical, multimodal Attractor Network Model that continuously integrates higher-order voluntary intentions with perceptual evidence and motor costs. Our model thus provides a unifying framework in which voluntary actions emerge from a dynamic combination of internal action tendencies and external environmental factors, each of which can be subject to Change of Mind.

5.
Sci Rep ; 11(1): 7475, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33811259

RESUMO

Functional recovery after brain damage varies widely and depends on many factors, including lesion site and extent. When a neuronal system is damaged, recovery may occur by engaging residual (e.g., perilesional) components. When damage is extensive, recovery depends on the availability of other intact neural structures that can reproduce the same functional output (i.e., degeneracy). A system's response to damage may occur rapidly, require learning or both. Here, we simulate functional recovery from four different types of lesions, using a generative model of word repetition that comprised a default premorbid system and a less used alternative system. The synthetic lesions (i) completely disengaged the premorbid system, leaving the alternative system intact, (ii) partially damaged both premorbid and alternative systems, and (iii) limited the experience-dependent plasticity of both. The results, across 1000 trials, demonstrate that (i) a complete disconnection of the premorbid system naturally invoked the engagement of the other, (ii) incomplete damage to both systems had a much more devastating long-term effect on model performance and (iii) the effect of reducing learning capacity within each system. These findings contribute to formal frameworks for interpreting the effect of different types of lesions.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Simulação por Computador , Recuperação de Função Fisiológica/fisiologia , Potenciais de Ação , Comportamento , Humanos , Modelos Biológicos , Plasticidade Neuronal/fisiologia
6.
Front Artif Intell ; 4: 780131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950869

RESUMO

Memorising vocabulary is an important aspect of formal foreign-language learning. Advances in cognitive psychology have led to the development of adaptive learning systems that make vocabulary learning more efficient. One way these computer-based systems optimize learning is by measuring learning performance in real time to create optimal repetition schedules for individual learners. While such adaptive learning systems have been successfully applied to word learning using keyboard-based input, they have thus far seen little application in word learning where spoken instead of typed input is used. Here we present a framework for speech-based word learning using an adaptive model that was developed for and tested with typing-based word learning. We show that typing- and speech-based learning result in similar behavioral patterns that can be used to reliably estimate individual memory processes. We extend earlier findings demonstrating that a response-time based adaptive learning approach outperforms an accuracy-based, Leitner flashcard approach in learning efficiency (demonstrated by higher average accuracy and lower response times after a learning session). In short, we show that adaptive learning benefits transfer from typing-based learning, to speech based learning. Our work provides a basis for the development of language learning applications that use real-time pronunciation assessment software to score the accuracy of the learner's pronunciations. We discuss the implications for our approach for the development of educationally relevant, adaptive speech-based learning applications.

7.
Nat Commun ; 10(1): 267, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655543

RESUMO

Despite being a fundamental dimension of experience, how the human brain generates the perception of time remains unknown. Here, we provide a novel explanation for how human time perception might be accomplished, based on non-temporal perceptual classification processes. To demonstrate this proposal, we build an artificial neural system centred on a feed-forward image classification network, functionally similar to human visual processing. In this system, input videos of natural scenes drive changes in network activation, and accumulation of salient changes in activation are used to estimate duration. Estimates produced by this system match human reports made about the same videos, replicating key qualitative biases, including differentiating between scenes of walking around a busy city or sitting in a cafe or office. Our approach provides a working model of duration perception from stimulus to estimation and presents a new direction for examining the foundations of this central aspect of human experience.


Assuntos
Cognição/fisiologia , Rede Nervosa/fisiologia , Percepção do Tempo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Biológicos , Estimulação Luminosa , Preconceito , Adulto Jovem
8.
PLoS One ; 13(10): e0205472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30372427

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0189109.].

9.
PLoS One ; 12(12): e0189109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236724

RESUMO

Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8-12Hz) and beta (13-30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.


Assuntos
Potenciais de Ação , Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA