Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(13): 132501, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034500

RESUMO

We report the first observation of two wobbling bands in ^{183}Au, both of which were interpreted as the transverse wobbling (TW) band but with different behavior of their wobbling energies as a function of spin. It increases (decreases) with spin for the positive (negative) parity configuration. The crucial evidence for the wobbling nature of the bands, dominance of the E2 component in the ΔI=1 transitions between the partner bands, is provided by the simultaneous measurements of directional correlation from the oriented states ratio and the linear polarization of the γ rays. Particle rotor model calculations with triaxial deformation reproduce the experimental data well. A value of spin, I_{m}, has been determined for the observed TW bands below which the wobbling energy increases and above which it decreases with spin. The nucleus ^{183}Au is, so far, the only nucleus in which both the increasing and the decreasing parts are observed and thus gives the experimental evidence of the complete transverse wobbling phenomenon.

2.
Phys Rev Lett ; 124(5): 052501, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083900

RESUMO

The rare phenomenon of nuclear wobbling motion has been investigated in the nucleus ^{187}Au. A longitudinal wobbling-bands pair has been identified and clearly distinguished from the associated signature-partner band on the basis of angular distribution measurements. Theoretical calculations in the framework of the particle rotor model are found to agree well with the experimental observations. This is the first experimental evidence for longitudinal wobbling bands where the expected signature partner band has also been identified, and establishes this exotic collective mode as a general phenomenon over the nuclear chart.

3.
Phys Rev Lett ; 118(9): 092502, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306274

RESUMO

Low-energy M1 strength functions of ^{60,64,68}Fe are determined on the basis of large-scale shell-model calculations with the goal to study their development from the bottom to the middle of the neutron shell. We find that the zero-energy spike, which characterizes nuclei near closed shells, develops toward the middle of the shell into a bimodal structure composed of a weaker zero-energy spike and a scissorslike resonance around 3 MeV, where the summed strengths of the two structures change within only 8% around a value of 9.8 µ_{N}^{2}. The summed strength of the scissors region exceeds the total γ absorption strength from the ground state by a factor of about three, which explains the discrepancy between total strengths of the scissors resonance derived from (γ, γ^{'}) experiments and from experiments using light-ion induced reactions.

4.
Phys Rev Lett ; 114(8): 082501, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768759

RESUMO

A pair of transverse wobbling bands is observed in the nucleus ^{135}Pr. The wobbling is characterized by ΔI=1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model.

5.
Phys Rev Lett ; 112(7): 072501, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579591

RESUMO

The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

6.
Phys Rev Lett ; 111(23): 232504, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476264

RESUMO

Magnetic dipole strength functions are deduced from averages of a large number of M1 transition strengths calculated within the shell model for the nuclides 90Zr, 94Mo, 95Mo, and 96Mo. An enhancement of M1 strength toward low transition energy is found for all nuclides considered. Large M1 strengths appear for transitions between close-lying states with configurations including proton as well as neutron high-j orbits that recouple their spins and add up their magnetic moments coherently. The M1 strength function deduced from the calculated M1 transition strengths is compatible with the low-energy enhancement found in (3He, 3He') and (d, p) experiments. The Letter presents an explanation of the experimental findings.

7.
Phys Rev Lett ; 110(2): 022503, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383897

RESUMO

The M1 excitations in the nuclide 90Zr have been studied in a photon-scattering experiment with monoenergetic and linearly polarized beams from 7 to 11 MeV. More than 40 J(π)=1+ states have been identified from observed ground-state transitions, revealing the fine structure of the giant M1 resonance with a centroid energy of 9 MeV and a sum strength of 4.17(56) µ(N)(2). The result for the total M1 strength and its fragmentation are discussed in the framework of the three-phonon quasiparticle-phonon model.

8.
Phys Rev Lett ; 110(10): 102501, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521253

RESUMO

Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.

9.
Phys Rev Lett ; 110(17): 172504, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679714

RESUMO

Two distinct sets of chiral-partner bands have been identified in the nucleus 133Ce. They constitute a multiple chiral doublet, a phenomenon predicted by relativistic mean field (RMF) calculations and observed experimentally here for the first time. The properties of these chiral bands are in good agreement with results of calculations based on a combination of the constrained triaxial RMF theory and the particle-rotor model.

10.
Phys Rev Lett ; 108(9): 092501, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463627

RESUMO

Stimulated by recent experimental discoveries, triaxial strongly deformed (TSD) states in (158)Er at ultrahigh spins have been studied by means of the Skyrme-Hartree-Fock model and the tilted-axis-cranking method. Restricting the rotational axis to one of the principal axes--as done in previous cranking calculations--two well-defined TSD minima in the total Routhian surface are found for a given configuration: one with positive and another with negative triaxial deformation γ. By allowing the rotational axis to change direction, the higher-energy minimum is shown to be a saddle point. This resolves the long-standing question of the physical interpretation of the two triaxial minima at a very similar quadrupole shape obtained in the principal-axis-cranking approach. Several TSD configurations have been predicted, including a highly deformed band, which is a candidate for the structure observed in experiment.

11.
J Res Natl Inst Stand Technol ; 105(1): 133-6, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-27551597

RESUMO

We have studied the isotopes (82)Rb45, (83)Rb46, and (84)Rb47 to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A = 80. Excited states in these nuclei were populated via the reaction (11)B + (76)Ge with E = 50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a γ-coincidence experiment using the spectrometer GASP we have found magnetic dipole bands in each studied nuclide. The regular M1 bands observed in the odd-odd nuclei (82)Rb and (84)Rb include B(M1)/B(E2) ratios decreasing smoothly with increasing spin in a range of 13(-) ≤ J(π) ≤ 16(-). These bands are interpreted in the tilted-axis cranking model on the basis of four-quasiparticle configurations of the type [Formula: see text]. This is the first evidence of magnetic rotation in the A ≈ 80 region. In contrast, the M1 sequences in the odd-even nucleus (83)Rb are not regular, and the B(M1)/B(E2) ratios show a pronounced staggering.

12.
Phys Rev Lett ; 102(12): 122501, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19392268

RESUMO

The expanded level structure of 240Pu available from the present study highlights the role of strong octupole correlations in this nucleus. In addition to a delayed alignment in the yrast band, the observations include the presence of both I(+)-->(I-1)(-) and I(-)-->(I-1)(+)E1 transitions linking states of the yrast and negative-parity bands at high spin and the presence of an additional even-spin, positive-parity band deexciting exclusively to the negative-parity sequence. The observations appear to be consistent with expectations based on the recently proposed concept of octupole phonon condensation.

13.
Phys Rev Lett ; 99(17): 172501, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995322

RESUMO

Electromagnetic transition probabilities have been measured for the intraband and interband transitions in the two sequences in the nucleus (135)Nd that were previously identified as a composite chiral pair of rotational bands. The chiral character of the bands is affirmed and it is shown that their behavior is associated with a transition from a vibrational into a static chiral regime.

14.
Phys Rev Lett ; 96(5): 052501, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16486924

RESUMO

Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F,4n)134Pr. Recoil distance Doppler-shift and Doppler-shift attenuation measurements using the Euroball spectrometer, in conjunction with the inner Bismuth Germanate ball and the Cologne plunger, were performed at beam energies of 87 MeV and 83 MeV, respectively. Reduced transition probabilities in 134Pr are compared to the predictions of the two quasiparticle + triaxial rotor and interacting boson fermion-fermion models. The experimental results do not support the presence of static chirality in 134Pr underlying the importance of shape fluctuations. Only within a dynamical context the presence of intrinsic chirality in 134Pr can be supported.

15.
Phys Rev Lett ; 95(6): 062501, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16090942

RESUMO

The nuclides 98Mo and 100Mo have been studied in photon-scattering experiments by using bremsstrahlung produced from electron beams with kinetic energies from 3.2 to 3.8 MeV. Six electromagnetic dipole transitions in 98Mo and 19 in 100Mo were observed for the first time in the energy range from 2 to 4 MeV. A specific feature in the two nuclides is the de-excitation of one state with spin J = 1 to the 0+ ground state as well as to the first excited 0+ state, which cannot be explained in standard models. We present a model that allows us to deduce the mixing coefficients for the two 0+ shape-isomeric states from the experimental ratio of the transition strengths from the J = 1 state to the 0+ ground state and to the 0+ excited state.

16.
Phys Rev Lett ; 84(25): 5732-5, 2000 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-10991041

RESUMO

It is shown that the rotating mean field of triaxial nuclei can break the chiral symmetry. Two nearly degenerate DeltaI=1 rotational bands originate from the left-handed and right-handed solutions.

17.
Phys Rev Lett ; 86(4): 604-7, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11177892

RESUMO

The spectroscopic quadrupole moment of the high-spin, high- K five-quasiparticle isomer (K(pi) = 35/2(-), T(1/2) = 750(80) ns, E(i) = 3349 keV) in (179)W has been determined using the level mixing spectroscopy method. A value Q(s) = 4.00(+0.83-1.06)e b was derived, which corresponds to an intrinsic quadrupole moment Q0 = 4.73(+0.98-1.25)e b and to a quadrupole deformation beta(2) = 0.185(+0.038-0.049). These values differ significantly from the deduced ground-state quadrupole moments and are in disagreement with the current theoretical predictions in this mass region.

18.
Phys Rev Lett ; 91(13): 132501, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-14525299

RESUMO

High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two DeltaI=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by DeltaI=1 and DeltaI=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and establishes the primarily geometric nature of this phenomenon.

19.
Phys Rev Lett ; 88(10): 102502, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11909351

RESUMO

The quadrupole moment of the 11(-) isomer in 196Pb has been measured by the level mixing spectroscopy method. This state has a pi(3s(-2)(1/2)1h(9/2)1i(13/2))11(-) configuration which is involved in most of the shears band heads in the Pb region. The first directly measured value of Q(s)(11(-)) = (-)3.41(66) b, coupled to the previously known quadrupole moment of the nu(1i(-2)(13/2))12(+) isomer allows us to estimate the quadrupole moment of the 16(-) shears band head as Q(s)(16(-)) = -0.32(10) b. The experimental values are compared to tilted axis cranking calculations, giving insight into the validity of the additivity approach to couple quadrupole moments and on the amount of deformation in the shears bands.

20.
Phys Rev Lett ; 86(6): 971-4, 2001 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11177987

RESUMO

New sideband partners of the yrast bands built on the pi(h11/2)nu(h11/2) configuration were identified in 55Cs, 57La, and 61Pm N = 75 isotones of 134Pr. These bands form with 134Pr unique doublet-band systematics suggesting a common basis. Aplanar solutions of 3D tilted axis cranking calculations for triaxial shapes define left- and right-handed chiral systems out of the three angular momenta provided by the valence particles and the core rotation, which leads to spontaneous chiral symmetry breaking and the doublet bands. Small energy differences between the doublet bands suggest collective chiral vibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA