RESUMO
Controlled delivery of heparin-binding (HB) proteins represents a challenge in regenerative medicine strategies. Here, we describe the features of novel nanoparticles (NPs), spontaneously coassembled due to affinity interactions between HB proteins and the semisynthetic anionic polysaccharide, alginate-sulfate. The NPs efficiently encapsulated and protected the proteins from proteolysis. Injection of a combination of NPs encapsulating multiple therapeutic growth factors promoted effective and long-term tissue repair in animal models of severe ischemia (murine model of hindlimb ischemia and acute myocardial infarction in rats). This simple yet efficient NP fabrication method is amenable for clinical use.
Assuntos
Portadores de Fármacos/administração & dosagem , Heparina/administração & dosagem , Nanopartículas/administração & dosagem , Medicina Regenerativa , Alginatos/química , Animais , Materiais Biocompatíveis/química , Modelos Animais de Doenças , Portadores de Fármacos/química , Ácido Glucurônico/química , Heparina/metabolismo , Ácidos Hexurônicos/química , Membro Posterior/patologia , Isquemia/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Nanopartículas/química , Ligação Proteica , Sulfatos/químicaRESUMO
The recent progress made in the bioengineering of cardiac patches offers a new therapeutic modality for regenerating the myocardium after myocardial infarction (MI). We present here a strategy for the engineering of a cardiac patch with mature vasculature by heterotopic transplantation onto the omentum. The patch was constructed by seeding neonatal cardiac cells with a mixture of prosurvival and angiogenic factors into an alginate scaffold capable of factor binding and sustained release. After 48 h in culture, the patch was vascularized for 7 days on the omentum, then explanted and transplanted onto infarcted rat hearts, 7 days after MI induction. When evaluated 28 days later, the vascularized cardiac patch showed structural and electrical integration into host myocardium. Moreover, the vascularized patch induced thicker scars, prevented further dilatation of the chamber and ventricular dysfunction. Thus, our study provides evidence that grafting prevascularized cardiac patch into infarct can improve cardiac function after MI.
Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Transplante de Coração/métodos , Infarto do Miocárdio/cirurgia , Omento/irrigação sanguínea , Omento/cirurgia , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Eletrocardiografia , Sobrevivência de Enxerto , Masculino , Microscopia Eletrônica de Varredura , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Omento/citologia , Ratos , Ratos Sprague-Dawley , Transplante Heterotópico , Resultado do TratamentoRESUMO
BACKGROUND: Adverse cardiac remodeling and progression of heart failure after myocardial infarction are associated with excessive and continuous damage to the extracellular matrix. We hypothesized that injection of in situ-forming alginate hydrogel into recent and old infarcts would provide a temporary scaffold and attenuate adverse cardiac remodeling and dysfunction. METHODS AND RESULTS: We developed a novel absorbable biomaterial composed of calcium-crosslinked alginate solution, which displays low viscosity and, after injection into the infarct, undergoes phase transition into hydrogel. To determine the outcome of the biomaterial after injection, calcium-crosslinked biotin-labeled alginate was injected into the infarct 7 days after anterior myocardial infarction in rat. Serial histology studies showed in situ formation of alginate hydrogel implant, which occupied up to 50% of the scar area. The biomaterial was replaced by connective tissue within 6 weeks. Serial echocardiography studies before and 60 days after injection showed that injection of alginate biomaterial into recent (7 days) infarct increased scar thickness and attenuated left ventricular systolic and diastolic dilatation and dysfunction. These beneficial effects were comparable and sometimes superior to those achieved by neonatal cardiomyocyte transplantation. Moreover, injection of alginate biomaterial into old myocardial infarction (60 days) increased scar thickness and improved systolic and diastolic dysfunction. CONCLUSIONS: We show for the first time that injection of in situ-forming, bioabsorbable alginate hydrogel is an effective acellular strategy that prevents adverse cardiac remodeling and dysfunction in recent and old myocardial infarctions in rat.
Assuntos
Alginatos/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Hidrogéis/uso terapêutico , Hipertrofia Ventricular Esquerda/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Disfunção Ventricular Esquerda/prevenção & controle , Remodelação Ventricular/efeitos dos fármacos , Alginatos/administração & dosagem , Alginatos/química , Alginatos/farmacologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácido Glucurônico/uso terapêutico , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Ácidos Hexurônicos/uso terapêutico , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Injeções Intralesionais , Masculino , Teste de Materiais , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/transplante , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , ViscosidadeRESUMO
To mimic the high affinity of heparin-binding proteins to heparin/heparan sulfate, the uronic acids in non-sulfated alginate were sulfated, and hydrogels of mixed alginate/alginate-sulfate were fabricated. Surface plasmon resonance analysis probed the interactions of 13 proteins with alginate-sulfate. Of these, the 10 heparin-binding proteins revealed strong binding to alginate-sulfate and heparin, but not to alginate. The equilibrium binding constants to alginate-sulfate were comparable or one order of magnitude higher than those obtained between the proteins and heparin. Only the fibroblast growth factors (FGFs) revealed higher affinity for heparin than to alginate-sulfate. Sulfation of hyaluronan, as well, resulted in strong binding of basic FGF to hyaluronan-sulfate, but not to hyaluronan. Mixed hydrogels of alginate/alginate-sulfate sustained the release of basic FGF, with the release rate being dependent on the percentage of bFGF bound to the hydrogels. In vivo, the delivery of bFGF bound to alginate/alginate-sulfate scaffolds induced the formation of twice the number of blood vessels compared to when bFGF was delivered adsorbed to the matrix and 51% of the vessels were matured, as judged by pericyte coverage of the vessels. Our results thus describe the engineering of alginate hydrogels for the spatially presentation and controlled delivery of heparin-binding proteins.
Assuntos
Alginatos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Hidrogéis/química , Sulfatos/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas Sanguíneas/química , Proteínas de Transporte/química , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/farmacologia , Masculino , Microesferas , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de SuperfícieRESUMO
This study describes the features of tissue-engineering scaffold capable of sequentially delivering three angiogenic factors. The scaffold consists of alginate-sulfate/alginate, wherein vascular endothelial growth factor (VEGF) platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1) are bound to alginate-sulfate with an affinity similar to that realized upon their binding to heparin. Factor release rate from the scaffold was correlated with the equilibrium binding constants of the factors to the matrix, thus enabling the sequential delivery of VEGF, PDGF-BB and TGF-beta1. In alginate scaffolds lacking alginate-sulfate, release of the adsorbed proteins was instantaneous. After subcutaneous implantation for 1 and 3 months in rats, the blood vessel density and percentage of mature vessels were 3-fold greater in the triple factor-bound scaffolds than in the factor-adsorbed or untreated scaffolds. Moreover, vascularization within the triple factor-bound scaffolds was superior to that found in scaffolds delivering only basic fibroblast growth factor. Application of this novel scaffold may be extended to the combined delivery of additional heparin-binding angiogenic factors or combinations of growth factors active in different tissue regeneration processes.