Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39126426

RESUMO

Navigating the complex landscape of high-dimensional omics data with machine learning models presents a significant challenge. The integration of biological domain knowledge into these models has shown promise in creating more meaningful stratifications of predictor variables, leading to algorithms that are both more accurate and generalizable. However, the wider availability of machine learning tools capable of incorporating such biological knowledge remains limited. Addressing this gap, we introduce BioM2, a novel R package designed for biologically informed multistage machine learning. BioM2 uniquely leverages biological information to effectively stratify and aggregate high-dimensional biological data in the context of machine learning. Demonstrating its utility with genome-wide DNA methylation and transcriptome-wide gene expression data, BioM2 has shown to enhance predictive performance, surpassing traditional machine learning models that operate without the integration of biological knowledge. A key feature of BioM2 is its ability to rank predictor variables within biological categories, specifically Gene Ontology pathways. This functionality not only aids in the interpretability of the results but also enables a subsequent modular network analysis of these variables, shedding light on the intricate systems-level biology underpinning the predictive outcome. We have proposed a biologically informed multistage machine learning framework termed BioM2 for phenotype prediction based on omics data. BioM2 has been incorporated into the BioM2 CRAN package (https://cran.r-project.org/web/packages/BioM2/index.html).


Assuntos
Aprendizado de Máquina , Fenótipo , Humanos , Metilação de DNA , Algoritmos , Biologia Computacional/métodos , Software , Transcriptoma , Genômica/métodos
2.
Acta Psychiatr Scand ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886846

RESUMO

BACKGROUND: Knowledge graphs (KGs) remain an underutilized tool in the field of psychiatric research. In the broader biomedical field KGs are already a significant tool mainly used as knowledge database or for novel relation detection between biomedical entities. This review aims to outline how KGs would further research in the field of psychiatry in the age of Artificial Intelligence (AI) and Large Language Models (LLMs). METHODS: We conducted a thorough literature review across a spectrum of scientific fields ranging from computer science and knowledge engineering to bioinformatics. The literature reviewed was taken from PubMed, Semantic Scholar and Google Scholar searches including terms such as "Psychiatric Knowledge Graphs", "Biomedical Knowledge Graphs", "Knowledge Graph Machine Learning Applications", "Knowledge Graph Applications for Biomedical Sciences". The resulting publications were then assessed and accumulated in this review regarding their possible relevance to future psychiatric applications. RESULTS: A multitude of papers and applications of KGs in associated research fields that are yet to be utilized in psychiatric research was found and outlined in this review. We create a thorough recommendation for other computational researchers regarding use-cases of these KG applications in psychiatry. CONCLUSION: This review illustrates use-cases of KG-based research applications in biomedicine and beyond that may aid in elucidating the complex biology of psychiatric illness and open new routes for developing innovative interventions. We conclude that there is a wealth of opportunities for KG utilization in psychiatric research across a variety of application areas including biomarker discovery, patient stratification and personalized medicine approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA