Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980827

RESUMO

The unprecedented silylene-supported dibenzodiboraoxepin 2 and 9,10-diboraphenanthrene complexes 6 and 8 were synthesized. The (NHSi)2B2(xanthene) [NHSi = PhC(NtBu)2(Me2N)Si:] 2 results from debromination of the bis(NHSi)-stabilized bis(dibromoboryl)xanthene 1 with potassium graphite (KC8); 2 is capable of activating white phosphorus and ammonia to form the B2P4 cage compound 3 and H2N-B-B-H diborane species 4, respectively. The thermal rearrangement of 2 affords the 9,10-dihydro-9,10-diboraphenanthrene 5 through a bis(NHSi)-assisted intramolecular reductive C-O-C deoxygenation process. Notably, the 9,10-diboraphenanthrene derivatives 6 and 8 could be generated by deoxygenation of 2 with KC8 and 1,3,4,5-tetramethylimidazol-2-ylidene, respectively. The aromaticity of 6 and 8 was confirmed by computational studies. Strikingly, the NHSi ligand in 8 engenders the monodeoxygenation of carbon dioxide in toluene at room temperature to form the CO-stabilized 9,10-diboraphenanthrene derivative 9 via the silaoxadiborinanone intermediate 10.

2.
J Am Chem Soc ; 146(9): 6025-6036, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408197

RESUMO

The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.

3.
Chemistry ; 30(34): e202400714, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622057

RESUMO

Quantum chemical calculations using ab initio methods at the MRCI+Q(8,9)/def2-QZVPPD and CCSD(T)/def2-QZVPPD levels as well as using density functional theory are reported for the diatomic molecules AeN- (Ae=Ca, Sr, Ba). The anions CaN- and SrN- have electronic triplet (3Π) ground states with nearly identical bond dissociation energies De ~57 kcal/mol calculated at the MRCI+Q(8,9)/def2-QZVPPD level. In contrast, the heavier homologue BaN- has a singlet (1Σ+) ground state, which is only 1.1 kcal/mol below the triplet (3Σ-) state. The computed bond dissociation energy of (1Σ+) BaN- is 68.4 kcal/mol. The calculations at the CCSD(T)-full/def2-QZVPPD and BP86-D3(BJ)/def2-QZVPPD levels are in reasonable agreement with the MRCI+Q(8,9)/def2-QZVPPD data, except for the singlet (1Σ+) state, which has a large multireference character. The calculated atomic partial charges given by the CM5, Voronoi and Hirshfeld methods suggest small to medium-sized Ae←N- charge donation for most electronic states. In contrast, the NBO method predicts for all species medium to large Ae→N- electronic charge donation, which is due to the neglect of the (n)p AOs of Ae atoms as genuine valence orbitals. Neither the bond orders nor the bond lengths correlate with the bond dissociation energies. The EDA-NOCV calculations show that the heavier alkaline earth atoms Ca, Sr, Ba use their (n)s and (n-1)d orbitals for covalent bonding.

4.
Chemistry ; 30(30): e202400966, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38530217

RESUMO

The reaction of organoberyllium compounds with hexaphenylcarbodiphosphorane yields mono-ortho-beryllated complexes, which feature a double dative Be=C bond. The bonding situation in these compounds together with a simple carbodiphosphorane and an N-heterocyclic carbene adduct was analysed with energy decomposition analysis in combination with natural orbital for chemical valence as well as with quantum theory of atoms-in-molecules. Furthermore, the driving forces accountable for mono-ortho-beryllation were elucidated along with the reactivity of the Be=C bond.

5.
Chemistry ; 30(17): e202304136, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206568

RESUMO

Quantum chemical calculations of the anions AeF- (Ae=Be-Ba) have been carried out using ab initio methods at the CCSD(T)/def2-TZVPP level and density functional theory employing BP86 with various basis sets. The detailed bonding analyses using different charge- and energy partitioning methods show that the molecules possess three distinctively different dative bonds in the lighter species with Ae=Be, Mg and four dative bonds when Ae=Ca, Sr, Ba. The occupied 2p atomic orbitals (AOs) and to a lesser degree the occupied 2s AO of F- donate electronic charge into the vacant spx(σ) and p(π) orbitals of Be and Mg which leads to a triple bond Ae F-. The heavier Ae atoms Ca, Sr, Ba use their vacant (n-1)d AOs as acceptor orbitals which enables them to form a second σ donor bond with F- that leads to quadruply bonded Ae F- (Ae=Ca-Ba). The presentation of molecular orbitals or charge distribution using only one isodensity value may give misleading information about the overall nature of the orbital or charge distribution. Better insights are given by contour line diagrams. The ELF calculations provide monosynaptic and disynaptic basins of AeF- which nicely agree with the analysis of the occupied molecular orbitals and with the charge density difference maps. A particular feature of the covalent bonds in AeF- concerns the inductive interaction of F- with the soft valence electrons in the (n)s valence orbitals of Ae. The polarization of the (n)s2 electrons induces a (n)spx hybridized lone-pair orbital at atom Ae, which yields a large dipole moment with the negative end at Ae. The concomitant formation of a vacant (n)spx AO of atom Ae, which overlaps with the occupied 2p(σ) AO of F-, leads to a strong covalent σ bond.

6.
J Am Chem Soc ; 145(28): 15353-15359, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37413697

RESUMO

The non-classical carbonyl complex [Hg{Fe(CO)5}2]2+ [SbF6]-2 is prepared by reaction of Hg(SbF6)2 and excess Fe(CO)5 in anhydrous HF. The single-crystal X-ray structure reveals a linear Fe-Hg-Fe moiety as well as an eclipsed conformation of the eight basal CO ligands. Interestingly, the Hg-Fe bond length of 2.5745(7) Å is relatively similar to the corresponding Hg-Fe bonds in literature-known [Hg{Fe(CO)4}2]2- dianions (2.52-2.55 Å), which intrigued us to analyze the bonding situation in both the dications and dianions with the energy decomposition analysis with natural orbitals for chemical valence (EDA-NOCV) method. Both species are best described as Hg(0) compounds, which are also confirmed by the shape of the HOMO-4 and HOMO-5 of the dication and dianion, respectively, in which the electron pair is located mainly at the Hg. Furthermore, for the dication and the dianion, the σ back-donation from Hg into the [Fe(CO)5]22+ or the [Fe(CO)4]22- fragment is the most dominant orbital interaction and surprisingly these interaction energies are also very similar even in absolute values. The fact that both iron-based fragments are missing two electrons explains their prominent σ-acceptor properties.

7.
Chemistry ; 29(30): e202300446, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36883663

RESUMO

Quantum chemical calculations using ab initio methods at the MRCI+Q(6,8)/def2-QZVPP and CCSD(T)/def2-QZVPP levels as well as density functional theory are reported for the diatomic molecules AeB- and isoelectronic AeC (Ae=Ca, Sr, Ba). The boride anions AeB- have an electronic triplet (3 Σ- ) ground state. The quintet (5 Σ- ) state is 5.8-12.3 kcal/mol higher in energy and the singlet (1 Δ) state is 13.1-15.3 kcal/mol above the triplet. The isoelectronic AeC molecules are also predicted to have a low-lying triplet (3 Σ- ) state but the quintet (5 Σ- ) state is only 2.2 kcal/mol (SrC) and 2.9 kcal/mol (CaC) above the triplet state. The triplet (3 Σ- ) and quintet (5 Σ- ) states of BaC are nearly isoenergetic. All systems have rather strong bonds. The calculated bond dissociation energies of the triplet (3 Σ- ) state are between De =38.3-41.7 kcal/mol for AeB- and De =49.4-57.5 kcal/mol for AeC. The barium species have always the strongest bonds whereas the calcium and strontium compounds have similar BDEs. The bonding analysis indicates that there is little charge migration in AeB- in the direction Ae→B- where the alkaline earth atoms carry positive charges between 0.09 e-0.22 e. The positive charges at the Ae atoms are much larger in AeC where the charge migration Ae→C is between 0.90 e-0.91 e. A detailed analysis of the interatomic interactions with the EDA-NOCV method shows that all diatomic species AeB- and AeC are built from dative interactions between Ae (1 S, ns2 ) and B- or C (3 P, 2 s2 2pπ 1 2pπ' 1 ). The eventually formed bonds in AeC are better described in terms of interactions between the ions Ae+ (2 S, ns1 )+C- (4 S, 2 s2 2pπ 1 2pπ' 1 2pσ 1 ). Inspection of the orbital interactions suggests that the alkaline earth atoms Ca, Sr, Ba use mainly their (n-1)d AOs besides the (n)s AOs for the covalent bonds. This creates a second energetically low-lying σ-bonding MO in the molecules, which feature valence orbitals with the order ϕ1 (σ-bonding)<ϕ2 (σ-bonding)<ϕ3 (degenerate π-bonding). All four occupied valence MOs of AeB- and AeC are bonding orbitals. Since the degenerate π orbitals ϕ3 are only singly occupied, the formal bond order is three.

8.
Chemistry ; 29(71): e202302886, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37730960

RESUMO

Carbodicarbene (CDC) has become an emerging ligand in many fields due to its strong σ-donating ability.

9.
J Phys Chem A ; 127(44): 9196-9205, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37883781

RESUMO

Quantum chemical studies using density functional theory were carried out for the (L)4C4 complexes with L = cAAC, DAC, NHC, SNHC, MIC1, and MIC2. The results show that the title complexes are highly stable with respect to dissociation, (L)4C4 → C4 + 4L. However, their stability with respect to (L)4C4 → 2(L)2C2 is crucial for the assessment of their experimental viability. The (L)4C4 complexes with L = cAAC and DAC dissociate exergonically at room temperature into two (L)2C2 units. In contrast, the other (L)4C4 complexes with L = NHC, SNHC, MIC1, and MIC2 are thermochemically stable with respect to dissociation, (L)4C4 → 2(L)2C2. The computed adiabatic ionization potentials of (L)4C4 complexes with L = NHC, MIC1, and MIC2 are lower than those for the cesium atom. Particularly, (MIC1)4C4 and (MIC2)4C4 will very easily lose electrons to form cationic complexes. The SNHC ligand is the best for the experimental realization of (L)4C4 complexes, followed by NHC. The bonding analysis using charge and energy decomposition methods suggests that the (L)3C4-CL bond can be best described as a typical electron-sharing double bond with a strong σ-bond and a weaker π-bond. Therefore, the core bonding pictures in the title complexes resemble a [4]radialene. Larger substituents at the carbene ligands enhance the stability of the complexes (L)4C4 against dissociation.

10.
Angew Chem Int Ed Engl ; 62(20): e202300068, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36862058

RESUMO

This work describes a strategy not only to isolate a dynamically stable radical with physical property tunability, but to efficiently regulate the radical dissociation with reversibility and photo controllability. The addition of Lewis acid B(C6 F5 )3 (BCF) into the solution of a radical σ-dimer (1-1) led to a stable radical (1⋅-2B), which has been characterized by EPR spectroscopy, UV/Vis spectroscopy and single crystal X-ray diffraction, in conjunction with theoretical calculation. The radical species is stabilized mainly by captodative effect, single electron transfer and steric effect. The absorption maximum of the radical can be tuned by using different Lewis acids. Dimer 1-1 can be achieved back by addition of a stronger base into the solution of 1⋅-2B, exhibiting a reversible process. By introducing a photo BCF generator, the dissociation of the dimer and the formation of the radical adduct become photocontrollable.

11.
J Am Chem Soc ; 144(18): 8355-8361, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482295

RESUMO

The CaCO2 complex is generated via the reaction of excited-state calcium atom with carbon dioxide in a solid neon matrix. Infrared absorption spectroscopy and quantum chemical calculations reveal that the complex has a planar four-membered ring structure with a strongly bent CO2 ligand side-on coordinated to the calcium center in an η2-O, O manner. The complex has an open-shell singlet ground state, which can be described as the bonding interactions between a Ca+ (4s1) cation in the doublet ground state and a doublet ground state CO2- anion. The analysis of the bonding situation suggests that the Ca-O2C bonds have a large (75%) electrostatic character. The covalent (orbital) interactions come from the coupling of the unpaired electrons of Ca+ and CO2- giving rise to electron-sharing bonding and a stronger contribution from dative bonding (Ca+)←(CO2-). The atomic orbitals (AOs) of Ca+ that are engaged in the covalent bonds are the 4s AO for the electron-sharing bonds and the 3d AOs for the dative bonds. This is further evidence for the assignment of the heavier alkaline-earth atoms as transition metals rather than main-group elements.

12.
J Am Chem Soc ; 144(16): 7357-7365, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35436104

RESUMO

Introducing a small phosphorus-based fragment into other molecular entities via, for example, phosphorylation/phosphonylation is an important process in synthetic chemistry. One of the approaches to achieve this is by trapping and subsequently releasing extremely reactive phosphorus-based molecules such as dioxophosphoranes. In this work, electron-rich hexaphenylcarbodiphosphorane (CDP) was used to stabilize the least thermodynamically favorable isomer of HO2P to yield monomeric CDP·PHO2. The title compound was observed to be a quite versatile phosphonylating agent; that is, it showed a great ability to transfer, for the first time, the HPO2 fragment to a number of substrates such as alcohols, amines, carboxylic acids, and water. Several phosphorous-based compounds that were generated using this synthetic approach were also isolated and characterized for the first time. According to the initial computational studies, the addition-elimination pathway was significantly more favorable than the corresponding elimination-addition route for "delivering" the HO2P unit in these reactions.


Assuntos
Álcoois , Ácidos Carboxílicos , Aminas , Ácidos Carboxílicos/química , Fósforo
13.
Acc Chem Res ; 54(15): 3071-3082, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34264062

RESUMO

ConspectusAlkaline earth elements beryllium, magnesium, calcium, strontium, and barium with an ns2 valence-shell configuration are usually classified as main-group elements that belong to the s-block atoms. For a long time, the elements were considered to be rather chemically uninteresting atomic species due to preconceived ideas about bonding, structure, and reactivity. They typically use the two ns valence electrons in forming ionic salt compounds with the metal in a formal oxidation state of +2. For the heavier alkaline earth atoms, calcium, strontium, and barium, their (n - 1)d atomic orbitals (AOs) are empty but lie close in energy to the valence np orbitals. Earlier theoretical investigations have already suggested that these elements can employ the (n - 1)d AOs to some extent to form polar bonds in divalent species in which the alkaline earth metal centers are sufficiently positively charged. The d orbital involvement increases from Ca to Sr and markedly in Ba. Thus, barium has been termed an honorary transition metal.Recently, molecular complexes of Ca, Sr, and Ba were prepared in the gas phase and in a low-temperature solid neon matrix and were detected by infrared spectroscopy. An analysis of the electronic structures of [Ba(CO)]+, [Ba(CO)]-, saturated coordinated octacarbonyls [M(CO)8] and [M(CO)8]+, isoelectronic dinitrogen complexes [M(N2)8] and [M(N2)8]+, and the tribenzene complexes [M(Bz)3] (M = Ca, Sr, Ba) revealed that the metal-ligand bonding can be straightforwardly discussed using the traditional Dewar-Chatt-Duncanson (DCD) model as in classical transition-metal complexes. The metal-ligand bonds can be explained with metal → ligand π back donation from occupied metal (n - 1)d AOs to vacant antibonding π molecular orbitals of the ligands with concomitant σ donation from occupied MOs of the ligands to vacant metal d orbitals of the alkaline earth atoms. In addition, heteronuclear Ca-Fe carbonyl cation complexes were also produced in the gas phase. Bonding analysis of the coordination saturated [CaFe(CO)10]+ complex implies that it can be described by the bonding interactions between a [Ca(CO)6]2+ fragment and an [Fe(CO)4]- anion fragment in forming a Fe → Ca d-d dative bond. The nature of metal-ligand and metal-metal bonding was quantitatively elucidated by the energy decomposition analysis in conjunction with the natural orbitals for the chemical valence (EDA-NOCV) method, which indicate that the (n - 1)d AOs of the alkaline earth metals are the dominant orbitals participating in the covalent interactions, just as typical transition metals. The results indicate that the heavier alkaline earth elements have a much richer covalent chemistry than previously thought. These findings, along with earlier studies, suggest that the heavier alkaline earth atoms Ca, Sr, and Ba should be classified as transition metals rather than main group atoms in the periodic table of the elements. This interesting structural chemistry, together with some recently reported examples of spectacular reactivity, establishes these elements as exciting and promising research targets in current research.

14.
Inorg Chem ; 61(48): 19452-19462, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36412917

RESUMO

Bismuth complexes stabilized by carbon-based donor ligands are underserved by their instability, often due to facile ligand dissociation and deleterious protonolysis. Herein, we show that the ortho-bismuthination of hexaphenylcarbodiphosphorane enables a robust framework with geometrically constrained carbone-bismuth bonding interactions, which are highly tunable by cationization. The carbodiphosphorane bismuth halides (1 and 2) are remarkably air-stable and feature unprecedented trans carboneC-Bi-X ligation, resulting in highly elongated Bi-X bonds. In contrast to known carbone-bismuth complexes, hydrolytic activation of the carbone yields well-defined organobismuth complexes, and subsequent dehydrohalogenation is feasible using potassium bis(trimethylsilyl)amide or N-heterocyclic carbenes. The redox-flexibility of this framework was evaluated in the high catalytic activity of 1 and 2 for silylation of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) under mild conditions (50 °C, 24-96 h) and low catalyst loadings (5-10 mol %), which suggests the accessibility of short-lived hydridic and radical bismuth species. The reaction of 1, PhSiH3, and tris(pentafluorophenyl)borane (BCF) yields the first crystallographically characterized bismuth hydridoborate complex as an ionic species (9), presumably by BCF-mediated hydride abstraction from an unobserved [Bi]-H intermediate. All isolated compounds have been characterized by heteronuclear NMR spectroscopy and X-ray crystallography, and the bonding situation in representative complexes (1, 2, 5, and 9) were further evaluated using density functional theory.

15.
Inorg Chem ; 61(1): 700-705, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894684

RESUMO

It is common knowledge that metal-to-ligand π back-donation requires filled atomic orbitals at the metal center. However, we show through a combined experimental and theoretical approach that Be(II)→N-heterocyclic carbene (NHC) π back-donation is present in the two carbene adducts [(iPr)BeBr2] (1) and [(iPr)2BeBr2] (2) (iPr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene). These complexes were characterized with NMR, IR, and Raman spectroscopy as well as with single-crystal X-ray diffractometry. The unusual bonding situation is understood from the results of energy decomposition analysis in combination with natural orbital for chemical valence and quantum theory of atoms-in-molecules analysis. The obtained findings shed light on the unusually high Be-C bond strength in carbene adducts to beryllium compounds and rationalize their geometry and reactivity.

16.
Phys Chem Chem Phys ; 24(27): 16732-16745, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770713

RESUMO

We present the results of DFT calculations and a thorough bonding analysis of the neutral and charged complexes of the elusive C2O2 species stabilized by two NHC ligands. It is shown that the thermodynamic stability of the neutral complex [(NHC)-C2O2-(NHC)] is due to the low-lying triplet state of [NHC-CO] (T), which is only 3.2 kcal mol-1 higher in energy than the singlet state [NHC-CO] (S), while the triplet state of CO is 131.9 kcal mol-1 above the singlet. The much lower S/T gap of [NHC-CO] than in CO comes from the charge donation of NHC into the degenerate π* LUMO of CO and the concomitant mixing of the LUMO of NHC with the degenerate π* LUMO of CO, which strongly lowers the energy difference between HOMO and LUMO in the complex. The energy gain resulting from the formation of the CC double bond compensates the singlet-triplet gap and the thermodynamic instability of the fragments [NHC-CO] (S). The dissociation of neutral [(NHC)-C2O2-(NHC)] to 2NHC and 2CO molecules is calculated to be endothermic by Do = 78.2 kcal mol-1. The bonding analysis indicates that the neutral and the charged molecules [(NHC)-C2O2-(NHC)]q have a central unit with C-C single bonds, where a combination of electron sharing and s dative interactions leads to very strong carbon-carbon bonds complemented by minor π-donation, which make all systems stable with respect to dissociation reactions. The central C2O2 fragment carries a large negative partial charge in the neutral and singly charged compounds [(NHC)-C2O2-(NHC)]0,1+, while it is neutral in the dication [(NHC)-C2O2-(NHC)]2+.

17.
Phys Chem Chem Phys ; 24(26): 15726-15735, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730200

RESUMO

We discuss the fundamental aspects of the EDA-NOCV method and address some critical comments that have been made recently. The EDA-NOCV method unlike most other methods focuses on the process of bond formation between the interacting species and not just only on the analysis of the finally formed bond. This is demonstrated using LiF as an example. There is a difference between the interactions between the initial species which form the bond and are also the final product of bond cleavage, and the interactions between the fragments in the eventually formed molecule. The flexibility of the method allows the choice of the interacting fragments which helps to identify the charge and electron configuration of the fragments which describe the bond. This is very helpful in cases where the bond may be described with several Lewis structures. We reject the idea that it would be a disadvantage to have "bond path functions" as the energy components in the EDA, which actually indicate the variability of the method. The bonding analysis in a different sequence of the bond formation gives important results for the various questions that can be asked. This is demonstrated by using CH2, CO2 and the formation of a guanine quartet as examples. The fact that a bond is always defined by the bound molecule, the fragments, and their states is universal and deeply physical, as we show here again for various examples. The results of the EDA-NOCV method are in full accordance with the physical mechanism of the chemical bond as revealed by Ruedenberg.


Assuntos
Elétrons
18.
J Chem Phys ; 157(3): 034105, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868915

RESUMO

Quantum chemical calculations using density functional theory are reported for the diatomic molecules LiF, BeO, and BN. The nature of the interatomic interactions is analyzed with the Energy Decomposition Analysis-Natural Orbitals of Chemical Valence (EDA-NOCV) method, and the results are critically discussed and compared with data from Quantum Theory of Atoms in Molecules, Natural Bond Orbital, and Mayer approaches. Polar bonds, like nonpolar bonds, are caused by the interference of wave functions, which lead to an accumulation of electronic charge in the bonding region. Polar bonds generally have a larger percentage of electrostatic bonding to the total attraction, but nonpolar bonds may also possess large contributions from Coulombic interaction. The term "ionic contribution" refers to valence bond structures and is misleading because it refers to separate fragments with negligible overlap that occur only in the solid state and in solution, not in a molecule. The EDA-NOCV method gives detailed information about the individual orbital contributions, which can be identified by visual inspection of the associated deformation densities. It is very important, particularly for polar bonds to distinguish between the interatomic interactions of the final dissociation products after bond rupture and the interactions between the fragments in the eventually formed bond. The bond formation in LiF is dominated by orbital interactions (90%) between Li and F yielding a single bond, but the eventually formed bond comes mainly from the electrostatic attraction between Li+ and F-, where the minor orbital interactions (10%) have equally strong σ and π components. The symmetry allowed bond formation of BeO between Be in the 1S ground state and O in the excited 1D state is dominated (90%) by a strong dative Be → O σ bond with negligible π interactions. The final bond situation in BeO is best described by the interaction between Be+ and O-, where the Coulombic forces provide 60% of the attraction and the orbital interactions give equally strong σ and π bonds. The chemical bond in BN is analyzed in the X3Π ground state and the a1Σ+ excited state. Both states have triple bonds with strong π bonds, which are in the a1Σ+ state even stronger than the σ bond.

19.
Angew Chem Int Ed Engl ; 61(38): e202209442, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35848899

RESUMO

The elusive plumbylone {[SiII (Xant)SiII ]Pb0 } 3 stabilized by the bis(silylene)xanthene chelating ligand 1, [SiII (Xant)SiII =PhC(NtBu)2 Si(Xant)Si(NtBu)2 CPh], and its isolable carbonyl iron complex {[SiII (Xant)SiII ]Pb0 Fe(CO)4 } 4 are reported. The compounds 3 and 4 were obtained stepwise via reduction of the lead(II) dibromide complex {[SiII (Xant)SiII ]PbBr2 } 2, prepared from the bis(silylene)xanthene 1 and PbBr2 , employing potassium naphthalenide and K2 Fe(CO)4 , respectively. While the genuine plumbylone 3 is rather labile even at -60 °C, its Pb0 →Fe(CO)4 complex 4 turned out to be relatively stable and bottleable. However, solutions of 4 decompose readily to elemental Pb and {[SiII (Xant)SiII ]Fe(CO)3 } 5 at 80 °C. Reaction of 4 with [Rh(CO)2 Cl]2 leads to the formation of the unusual dimeric [(OC)2 RhPb(Cl)Fe(CO)4 ] complex 6 with trimetallic Rh-Pb-Fe bonds. The molecular and electronic structures of 3 and 4 were established by Density Functional Theory (DFT) calculations.

20.
Angew Chem Int Ed Engl ; 61(23): e202202516, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289046

RESUMO

Borepin, a 7-membered boron-containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron-deficient borepins are well-established, reduced electron-rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a, 2 b) and anion (3 a, 3 b) complexes, which have been synthesized by potassium graphite (KC8 ) reduction of cyclic(alkyl)(amino) carbene-dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X-ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA