RESUMO
The fluorescence attenuation caused by the absorption of the excitation and/or emission light is called the Inner Filter Effect (IFE) and can lead to a nonlinear fluorescence concentration response. In this article, we propose the AddAbs (Added Absorber) method, which counterintuitively corrects IFE by increasing the absorbance of the sample. In this method, an equal amount of a highly absorbing chromophore is added to each sample to compensate for the nonuniform quenching caused by different fluorophore concentrations. The AddAbs method was able to provide a linear fluorescence response (R2 > 0.999) for very concentrated fluorophore solutions with extreme IFE over more than 97% of the concentration range with less than 1% deviation in calibration slope. The true limit for the AddAbs method with respect to fluorophore concentration was apparently not reached and could be higher than measured (Aex,1cm > 33.94). The IFE-corrected data are obtained by a single fluorescence measurement per sample without additional mathematical procedures. The method also does not require absorbance measurements, so it can be performed in non-transparent microplates with similar results. In addition, preliminary measurements indicate that the method is also suitable for measurements in standard cuvettes using a fluorimeter with a 90° angle setup.
RESUMO
The propensity of 4-hydroxybenzhydrazone-related ligands derived from 3-methoxysalicylaldehyde (H2L3OMe), 4-methoxysalicylaldehyde (H2L4OMe), and salicylaldehyde (H2LH) to act as chelating and/or bridging ligands in Ni(II) complexes was investigated. Three clusters of different nuclearities, [Ni3(L3OMe)2(OAc)2(MeOH)2]â2MeOHâMeCN (1â2MeOHâMeCN), [Ni2(HL4OMe)(L4OMe)(OAc)(MeOH)2]â4.7MeOH (2â4.7MeOH), and [Ni4(HLH)2(LH)2(OAc)2]â4MeOH·0.63H2O·0.5MeCN·HOAc (3â4MeOH·0.63H2O·0.5MeCN·HOAc), were prepared from Ni(OAc)2â4H2O and the corresponding ligand in the presence of Et3N. The hydrazones in these acetato- and phenoxido-bridged clusters acted as singly or doubly deprotonated ligands. When pyridine was used, mononuclear complexes with the square-planar geometry seemed to be favoured, as found for complexes [Ni(L3OMe)(py)] (4), [Ni(L4Ome)(py)] (5) and [Ni(LH)(py)] (6). Ligand substituent effects and the stability of square-planar complexes were investigated and quantified by extensive quantum chemical analysis. Obtained results showed that standard Gibbs energies of binding were lower for square-planar than for octahedral complexes. Starting from [MoO2(L)(EtOH)] complexes as precursors and applying the metal-exchange procedure, the mononuclear complexes [Ni(HL3OMe)2]âMeOH (7âMeOH) and [Ni(HLH)]â2MeOH (9â2MeOH) and hybrid organic-inorganic compound [Ni2(HL4OMe)2(CH3OH)4][Mo4O10(OCH3)6] (10) were achieved. The octahedral complexes [Ni(HL)2] (7-9) can also be obtained by the direct synthesis from Ni(Oac)2â4H2O and the appropriate ligand under specific reaction conditions. Crystal and molecular structures of 1â2MeOHâMeCN, 2â4.7MeOH, 3â4MeOHâ0.63H2Oâ0.5MeCNâHOAc, 4, 5, 9â2MeOH, and 10 were determined by the single-crystal X-ray diffraction method.
Assuntos
Complexos de Coordenação , Níquel , Níquel/química , Ligantes , Hidrazonas/química , Estrutura Molecular , Cristalografia por Raios X , Complexos de Coordenação/químicaRESUMO
The inner filter effect (IFE) hinders fluorescence measurements, limiting linear dependence of fluorescence signals to low sample concentrations. Modern microplate readers allow movement of the optical element in the vertical axis, changing the relative position of the focus and thus the sample geometry. The proposed Z-position IFE correction method requires only two fluorescence measurements at different known vertical axis positions (z-positions) of the optical element for the same sample. Samples of quinine sulfate, both pure and in mixtures with potassium dichromate, showed a linear dependence of corrected fluorescence on fluorophore concentration (R2 > 0.999), up to Aex ≈ 2 and Aem ≈ 0.5. The correction extended linear fluorescence response over ≈98% of the concentration range with ≈1% deviation of the calibration slope, effectively eliminating the need for sample dilution or separate absorbance measurements to account for IFE. The companion numerical IFE correction method further eliminates the need for any geometric parameters with similar results. Both methods are available online at https://ninfe.science.
Assuntos
Corantes Fluorescentes , Espectrometria de Fluorescência/métodosRESUMO
Physiological or pathophysiological changes lead to posttranslational changes in the sialic acid content of human serum transferrin (hTf), an essential mediator of iron transport in the human body, resulting in a significantly increased concentration of desialylated hTf. The intrinsic fluorescence quenching upon binding of iron to hTf was successfully modeled using the binding polynomial for two iron-binding sites, allowing measurements in a high-throughput format. Removal of sialic acid residues resulted in a 3-fold increase in iron binding affinity for both sites of hTf at pH 7.4. The pH-dependence of iron binding showed significant differences in equilibrium constants, resulting in a 10-fold increase in binding affinity for desialylated hTf at pH 5.9. The changes in hTf sialylation apparently result in tuning of the stability of the conformational state, which in turn contributes to the stability of the diferric hTf. The observed differences in the conditional thermodynamic equilibrium constants suggest that the desialylated protein has a higher preference for diferric hTf over monoferric hTf species down to pH 6.5, which may also influence the interaction with transferrin receptors that preferentially bind to diferric hTf. The results suggest a link between changes in hTf glycan structure and alterations in iron binding equilibrium associated with tissue acidosis.
Assuntos
Ligação Proteica , Transferrina , Transferrina/metabolismo , Transferrina/química , Humanos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Ferro/química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Sítios de Ligação , TermodinâmicaRESUMO
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Assuntos
Ferro , Transferrina , Humanos , Ferro/química , Transferrina/metabolismo , Ânions/química , Carbonatos , Calorimetria , Termodinâmica , OxalatosRESUMO
Various preparations of iron(III) nitrilotriacetate (FeNTA) solution reported in the literature lack a comprehensive method for accurate determination of FeNTA concentration and often result in unstable solutions. A detailed procedure for the preparation of FeNTA solution is presented that includes the standardization of both components of the chelate. The standardization of the components allowed the accurate determination of the molar absorption coefficients for the calculation of the FeNTA concentration in two different buffers at pH 5.6 and 7.4. The variation of pH in this range or ionic strength in the range from 0 M to 3 M (KCl) has little effect on the value of the molar absorption coefficient. The precise concentrations of all species involved in the equilibria between Fe and NTA were determined in the pH range 2-12 using the Jenkins-Traub algorithm to solve the 5th-order polynomial in Microsoft Excel. In view of the experimental observations and the calculated distribution of species, the stability of FeNTA solutions may be affected by the Fe : NTA ratio and the total concentrations, with dilute solutions and those with an excess of NTA over Fe showing higher stability.
Assuntos
Ferro , Ácido Nitrilotriacético , Ferro/metabolismo , Ligação Proteica , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/metabolismoRESUMO
Low-pressure pH gradient ion exchange separation provides a fast, simple and cost-effective method for preparative purification of native and desialylated apo-transferrin. The method enables easy monitoring of the extent of the desialylation reaction and also the efficient separation and purification of protein fractions after desialylation. The N-glycan analysis shows that the modified desialylation protocol successfully reduces the content of the sialylated fractions relative to the native apo-transferrin. In the optimized protocol, the desialylation capacity is increased by 150 %, compared to the original protocol provided by the manufacturer. The molar absorption coefficients in the near-UV region for the native and desialylated apo-transferrin differ by several percent, suggesting a subtle dependence of the glycoprotein absorbance on the variable sialic acid content. The method can easily be modified for other glycoproteins and is particularly appropriate for quick testing of sialic acid content in the protein glycosylation patterns prior to further verification by mass spectrometry.