Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(17): 1506-1523, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776958

RESUMO

The ubiquitin-proteasome system mediates the degradation of a wide variety of proteins. Proteasome dysfunction is associated with neurodegenerative diseases and neurodevelopmental disorders in humans. Here we identified mutations in PSMC5, an AAA ATPase subunit of the proteasome 19S regulatory particle, in individuals with neurodevelopmental disorders, which were initially considered as variants of unknown significance. We have now found heterozygotes with the following mutations: P320R (6 individuals), R325W, Q160A, and one nonsense mutation at Q69. We focused on understanding the functional consequence of PSMC5 insufficiency and the P320R mutation in cells and found that both impair proteasome function and activate apoptosis. Interestingly, the P320R mutation impairs proteasome function by weakening the association between the 19S regulatory particle and the 20S core particle. Our study supports that proteasome dysfunction is the pathogenic cause of neurodevelopmental disorders in individuals carrying PSMC5 variants.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Apoptose/genética , Masculino , Feminino , Ubiquitina/metabolismo , Ubiquitina/genética , Células HEK293
2.
Am J Hum Genet ; 108(1): 176-185, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245860

RESUMO

Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Fatores de Crescimento de Fibroblastos/genética , Mutação de Sentido Incorreto/genética , Isoformas de Proteínas/genética , Adolescente , Sequência de Aminoácidos , Criança , Éxons/genética , Feminino , Mutação com Ganho de Função/genética , Genes Ligados ao Cromossomo X/genética , Heterozigoto , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Convulsões/genética
3.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921875

RESUMO

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Transmissão Sináptica/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
4.
J Med Genet ; 60(2): 183-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393335

RESUMO

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Assuntos
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterozigoto , Homozigoto , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
5.
Pract Neurol ; 23(2): 111-119, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639246

RESUMO

An understanding of epilepsy genetics is important for adult neurologists, as making a genetic diagnosis gives clinical benefit. In this review, we describe the key features of different groups of genetic epilepsies. We describe the common available genetic tests for epilepsy, and how to interpret them.


Assuntos
Epilepsia , Neurologistas , Humanos , Adulto , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos
6.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735293

RESUMO

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , Transcriptoma
7.
Am J Med Genet A ; 188(1): 272-282, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515416

RESUMO

By clinical whole exome sequencing, we identified 12 individuals with ages 3 to 37 years, including three individuals from the same family, with a consistent phenotype of intellectual disability (ID), macrocephaly, and overgrowth of adenoid tissue. All 12 individuals harbored a rare heterozygous variant in ZBTB7A which encodes the transcription factor Zinc finger and BTB-domain containing protein 7A, known to play a role in lympho- and hematopoiesis. ID was generally mild. Fetal hemoglobin (HbF) fraction was elevated 2.2%-11.2% (reference value <2% in individuals > 6 months) in four of the five individuals for whom results were available. Ten of twelve individuals had undergone surgery at least once for lymphoid hypertrophy limited to the pharynx. In the most severely affected individual (individual 1), airway obstruction resulted in 17 surgical procedures before the age of 13 years. Sleep apnea was present in 8 of 10 individuals. In the nine unrelated individuals, ZBTB7A variants were novel and de novo. The six frameshift/nonsense and four missense variants were spread throughout the gene. This is the first report of a cohort of individuals with this novel syndromic neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Hemoglobina Fetal , Humanos , Deficiência Intelectual/genética , Tecido Linfoide , Megalencefalia/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética
8.
Am J Hum Genet ; 103(5): 786-793, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343942

RESUMO

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 unrelated individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Computer structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones. These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skeletal features.

9.
Genet Med ; 23(7): 1202-1210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33674768

RESUMO

PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.


Assuntos
Histona Desmetilases/genética , Deficiência Intelectual , Caracteres Sexuais , Anormalidades Múltiplas , Proteínas de Ligação a DNA/genética , Face/anormalidades , Feminino , Estudos de Associação Genética , Doenças Hematológicas , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Proteínas de Neoplasias/genética , Fenótipo , Doenças Vestibulares
10.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515017

RESUMO

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Feto/diagnóstico por imagem , Variação Genética/genética , Células HEK293 , Humanos , Lactente , Masculino
11.
Hum Mutat ; 41(5): 1042-1050, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097528

RESUMO

Pathogenic variants in ZMYND11, which acts as a transcriptional repressor, have been associated with intellectual disability, behavioral abnormalities, and seizures. Only 11 affected individuals have been reported to date, and the phenotype associated with pathogenic variants in this gene have not been fully defined. Here, we present 16 additional patients with predicted pathogenic heterozygous variants in including four individuals from the same family, to further delineate and expand the genotypic and phenotypic spectrum of ZMYND11-related syndromic intellectual disability. The associated phenotype includes developmental delay, particularly affecting speech, mild-moderate intellectual disability, significant behavioral abnormalities, seizures, and hypotonia. There are subtle shared dysmorphic features, including prominent eyelashes and eyebrows, a depressed nasal bridge with bulbous nasal tip, anteverted nares, thin vermilion of the upper lip, and wide mouth. Novel features include brachydactyly and tooth enamel hypoplasia. Most identified variants are likely to result in premature truncation and/or nonsense-mediated decay. Two ZMYND11 variants located in the final exon-p.(Gln586*) (likely escaping nonsense-mediated decay) and p.(Cys574Arg)-are predicted to disrupt the MYND-type zinc-finger motif and likely interfere with binding to its interaction partners. Hence, the homogeneous phenotype likely results from a common mechanism of loss-of-function.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Alelos , Criança , Pré-Escolar , Fácies , Feminino , Estudos de Associação Genética/métodos , Genótipo , Haploinsuficiência , Humanos , Masculino , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Fenótipo , Síndrome , Dedos de Zinco
12.
Am J Hum Genet ; 101(5): 664-685, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100083

RESUMO

Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Mutação/genética , Criança , Pré-Escolar , Feminino , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Deficiência Intelectual/genética , Masculino , Recidiva , Convulsões/genética
13.
Clin Genet ; 97(6): 927-932, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170730

RESUMO

Two 1p36 contiguous gene deletion syndromes are known so far: the terminal 1p36 deletion syndrome and a 1p36 deletion syndrome with a critical region located more proximal at 1p36.23-1p36.22. We present even more proximally located overlapping deletions from seven individuals, with the smallest region of overlap comprising 1 Mb at 1p36.13-1p36.12 (chr1:19077793-20081292 (GRCh37/hg19)) defining a new contiguous gene deletion syndrome. The characteristic features of this new syndrome are learning disability or mild intellectual disability, speech delay, behavioral abnormalities, and ptosis. The genes UBR4 and CAPZB are considered the most likely candidate genes for the features of this new syndrome.


Assuntos
Blefaroptose/genética , Proteínas de Ligação a Calmodulina/genética , Proteína de Capeamento de Actina CapZ/genética , Transtornos Cromossômicos/genética , Deficiências da Aprendizagem/genética , Ubiquitina-Proteína Ligases/genética , Blefaroptose/patologia , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 1/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/patologia , Masculino , Fenótipo
14.
Am J Med Genet A ; 182(7): 1637-1654, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319732

RESUMO

With advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants. These 21 patients follow on from the previous study published by Yates et al. in 2017 from our group predominantly identified from the Deciphering Developmental Disorders study that reported seven patients with HNRNPU variants. All the probands reported here have a de novo loss-of-function variant. These probands have craniofacial dysmorphic features, in the majority including widely spaced teeth, microcephaly, high arched eyebrows, and palpebral fissure abnormalities. Many of the patients in the group also have moderate to severe ID and seizures that tend to start in early childhood. This series has allowed us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency, and expand substantially on already published literature on HNRNPU-related neurodevelopmental syndrome.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Anormalidades Craniofaciais/etiologia , Feminino , Haploinsuficiência/genética , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Microcefalia/etiologia , Transtornos do Neurodesenvolvimento/genética , Gravidez , Convulsões/genética , Síndrome
15.
Clin Genet ; 95(5): 607-614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859550

RESUMO

Crisponi/cold-induced sweating syndrome (CS/CISS) is a rare autosomal recessive disorder characterized by a complex phenotype (hyperthermia and feeding difficulties in the neonatal period, followed by scoliosis and paradoxical sweating induced by cold since early childhood) and a high neonatal lethality. CS/CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 (CS/CISS1), CLCF1 (CS/CISS2) and KLHL7 (CS/CISS-like). Here, a whole exome sequencing approach in individuals with CS/CISS-like phenotype with unknown molecular defect revealed unpredicted alternative diagnoses. This approach identified putative pathogenic variations in NALCN, MAGEL2 and SCN2A. They were already found implicated in the pathogenesis of other syndromes, respectively the congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome, the Schaaf-Yang syndrome, and the early infantile epileptic encephalopathy-11 syndrome. These results suggest a high neonatal phenotypic overlap among these disorders and will be very helpful for clinicians. Genetic analysis of these genes should be considered for those cases with a suspected CS/CISS during neonatal period who were tested as mutation negative in the known CS/CISS genes, because an expedited and corrected diagnosis can improve patient management and can provide a specific clinical follow-up.


Assuntos
Sequenciamento do Exoma , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hiperidrose/diagnóstico , Hiperidrose/genética , Trismo/congênito , Morte Súbita , Fácies , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Trismo/diagnóstico , Trismo/genética
16.
Brain ; 141(3): 698-712, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365063

RESUMO

Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.


Assuntos
Mutação/genética , Proteínas do Tecido Nervoso/genética , Polimicrogiria/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Agonistas de Aminoácidos Excitatórios/farmacologia , Saúde da Família , Feminino , Ácido Glutâmico/farmacologia , Glicina/metabolismo , Glicina/farmacologia , Células HEK293 , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/genética , Modelos Moleculares , Mutagênese/genética , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Polimicrogiria/diagnóstico por imagem , Ratos , Transfecção
17.
Prenat Diagn ; 38(1): 33-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096039

RESUMO

OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


Assuntos
Anormalidades Congênitas/genética , Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Pais , Diagnóstico Pré-Natal/métodos , Feminino , Genes Recessivos , Humanos , Masculino , Gravidez
20.
BMC Med Genet ; 17(1): 34, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113213

RESUMO

BACKGROUND: Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. METHODS: We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. RESULTS: 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. CONCLUSIONS: We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia/genética , Deficiência Intelectual/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Deleção de Sequência , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , País de Gales , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA