Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 11(2): e1004922, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25642983

RESUMO

Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers.


Assuntos
Carcinogênese/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hemangiossarcoma/genética , Linfoma de Células B/genética , Animais , Linfócitos B/patologia , Cruzamento , Carcinogênese/imunologia , Cães , Genótipo , Mutação em Linhagem Germinativa , Haplótipos/genética , Hemangiossarcoma/imunologia , Hemangiossarcoma/patologia , Hemangiossarcoma/veterinária , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/veterinária , Polimorfismo de Nucleotídeo Único , Fatores de Risco
2.
Genome Biol ; 14(12): R132, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24330828

RESUMO

BACKGROUND: Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible. RESULTS: Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors. CONCLUSIONS: Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease.


Assuntos
Neoplasias Ósseas/veterinária , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Doenças do Cão/genética , Estudo de Associação Genômica Ampla , Osteossarcoma/veterinária , Animais , Neoplasias Ósseas/genética , Variações do Número de Cópias de DNA , Cães , Evolução Molecular , Predisposição Genética para Doença , Variação Genética , Genoma , Humanos , MicroRNAs/genética , Osteossarcoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA