Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 267(1): 233-42, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14554189

RESUMO

In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA