Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(1): 91-99, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804319

RESUMO

Pathogenic variants in the MFN2 gene are commonly associated with autosomal dominant (CMT2A2A) or recessive (CMT2A2B) Charcot-Marie-Tooth disease, with possible involvement of the CNS. Here, we present a case of severe antenatal encephalopathy with lissencephaly, polymicrogyria and cerebellar atrophy. Whole genome analysis revealed a homozygous deletion c.1717-274_1734 del (NM_014874.4) in the MFN2 gene, leading to exon 16 skipping and in-frame loss of 50 amino acids (p.Gln574_Val624del), removing the proline-rich domain and the transmembrane domain 1 (TM1). MFN2 is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial fusion, shaping large mitochondrial networks within cells. In silico modelling showed that the loss of the TM1 domain resulted in a drastically altered topological insertion of the protein in the mitochondrial outer membrane. Fetus fibroblasts, investigated by fluorescent cell imaging, electron microscopy and time-lapse recording, showed a sharp alteration of the mitochondrial network, with clumped mitochondria and clusters of tethered mitochondria unable to fuse. Multiple deficiencies of respiratory chain complexes with severe impairment of complex I were also evidenced in patient fibroblasts, without involvement of mitochondrial DNA instability. This is the first reported case of a severe developmental defect due to MFN2 deficiency with clumped mitochondria.


Assuntos
Encefalopatias , Doença de Charcot-Marie-Tooth , Gravidez , Humanos , Feminino , Homozigoto , Mutação/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Deleção de Sequência , Mitocôndrias/metabolismo , Encefalopatias/genética , Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
2.
Brain ; 146(3): 858-864, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417180

RESUMO

Pyruvate is an essential metabolite produced by glycolysis in the cytosol and must be transported across the inner mitochondrial membrane into the mitochondrial matrix, where it is oxidized to fuel mitochondrial respiration. Pyruvate import is performed by the mitochondrial pyruvate carrier (MPC), a hetero-oligomeric complex composed by interdependent subunits MPC1 and MPC2. Pathogenic variants in the MPC1 gene disrupt mitochondrial pyruvate uptake and oxidation and cause autosomal-recessive early-onset neurological dysfunction in humans. The present work describes the first pathogenic variants in MPC2 associated with human disease in four patients from two unrelated families. In the first family, patients presented with antenatal developmental abnormalities and harboured a homozygous c.148T>C (p.Trp50Arg) variant. In the second family, patients that presented with infantile encephalopathy carried a missense c.2T>G (p.Met1?) variant disrupting the initiation codon. Patient-derived skin fibroblasts exhibit decreased pyruvate-driven oxygen consumption rates with normal activities of the pyruvate dehydrogenase complex and mitochondrial respiratory chain and no defects in mitochondrial content or morphology. Re-expression of wild-type MPC2 restored pyruvate-dependent respiration rates in patient-derived fibroblasts. The discovery of pathogenic variants in MPC2 therefore broadens the clinical and genetic landscape associated with inborn errors in pyruvate metabolism.


Assuntos
Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Feminino , Gravidez , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Ácido Pirúvico/metabolismo
3.
Genet Med ; 25(6): 100314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305855

RESUMO

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Assuntos
Falência Hepática Aguda , Falência Hepática , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Acetilcisteína/uso terapêutico , Falência Hepática/tratamento farmacológico , Falência Hepática/genética , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/genética , Proteínas Mitocondriais/genética , Mutação , Estudos Retrospectivos , tRNA Metiltransferases/genética
4.
J Med Genet ; 59(2): 204-208, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199448

RESUMO

BACKGROUND: Biallelic variants in PNPT1 cause a mitochondrial disease of variable severity. PNPT1 (polynucleotide phosphorylase) is a mitochondrial protein involved in RNA processing where it has a dual role in the import of small RNAs into mitochondria and in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This, in turn, prevents the activation of type I interferon response. Detailed neuroimaging findings in PNPT1-related disease are lacking with only a few patients reported with basal ganglia lesions (Leigh syndrome) or non-specific signs. OBJECTIVE AND METHODS: To document neuroimaging data in six patients with PNPT1 highlighting novel findings. RESULTS: Two patients exhibited striatal lesions compatible with Leigh syndrome; one patient exhibited leukoencephalopathy and one patient had a normal brain MRI. Interestingly, two unrelated patients exhibited cystic leukoencephalopathy resembling RNASET2-deficient patients, patients with Aicardi-Goutières syndrome (AGS) or congenital CMV infection. CONCLUSION: We suggest that similar to RNASET2, PNPT1 be searched for in the setting of cystic leukoencephalopathy. These findings are in line with activation of type I interferon response observed in AGS, PNPT1 and RNASET2 deficiencies, suggesting a common pathophysiological pathway and linking mitochondrial diseases, interferonopathies and immune dysregulations.


Assuntos
Encéfalo/diagnóstico por imagem , Exorribonucleases/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Adulto , Encéfalo/patologia , Criança , Pré-Escolar , Humanos , Interferon Tipo I/genética , Doença de Leigh/patologia , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Doenças Mitocondriais/diagnóstico por imagem , Neuroimagem , Sequenciamento Completo do Genoma
5.
Clin Chem ; 68(2): 313-321, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871369

RESUMO

BACKGROUND: To date, the usage of Galaxy, an open-source bioinformatics platform, has been reported primarily in research. We report 5 years' experience (2015 to 2020) with Galaxy in our hospital, as part of the "Assistance Publique-Hôpitaux de Paris" (AP-HP), to demonstrate its suitability for high-throughput sequencing (HTS) data analysis in a clinical laboratory setting. METHODS: Our Galaxy instance has been running since July 2015 and is used daily to study inherited diseases, cancer, and microbiology. For the molecular diagnosis of hereditary diseases, 6970 patients were analyzed with Galaxy (corresponding to a total of 7029 analyses). RESULTS: Using Galaxy, the time to process a batch of 23 samples-equivalent to a targeted DNA sequencing MiSeq run-from raw data to an annotated variant call file was generally less than 2 h for panels between 1 and 500 kb. Over 5 years, we only restarted the server twice for hardware maintenance and did not experience any significant troubles, demonstrating the robustness of our Galaxy installation in conjunction with HTCondor as a job scheduler and a PostgreSQL database. The quality of our targeted exome sequencing method was externally evaluated annually by the European Molecular Genetics Quality Network (EMQN). Sensitivity was mean (SD)% 99 (2)% for single nucleotide variants and 93 (9)% for small insertion-deletions. CONCLUSION: Our experience with Galaxy demonstrates it to be a suitable platform for HTS data analysis with vast potential to benefit patient care in a clinical laboratory setting.


Assuntos
Biologia Computacional , Laboratórios Clínicos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA , Software
6.
Genet Med ; 23(9): 1769-1778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040194

RESUMO

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Adulto , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Deleção de Sequência/genética
7.
Mol Genet Metab ; 132(1): 38-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309011

RESUMO

Adenosine kinase (ADK) deficiency is characterized by liver disease, dysmorphic features, epilepsy and developmental delay. This defect disrupts the adenosine/AMP futile cycle and interferes with the upstream methionine cycle. We report the clinical, histological and biochemical courses of three ADK children carrying two new mutations and presenting with neonatal cholestasis and neurological disorders. One of them died of liver failure whereas the other two recovered from their liver damage. As the phenotype was consistent with a mitochondrial disorder, we studied liver mitochondrial respiratory chain activities in two patients and revealed a combined defect of several complexes. In addition, we retrospectively analyzed methionine plasma concentration, a hallmark of ADK deficiency, in a cohort of children and showed that methionine level in patients with ADK deficiency was strongly increased compared with patients with other liver diseases. ADK deficiency is a cause of neonatal or early infantile liver disease that may mimic primary mitochondrial disorders. In this context, an elevation of methionine plasma levels over twice the upper limit should not be considered as a nonspecific finding. ADK deficiency induced-liver dysfunction is most often transient, but could be life-threatening.


Assuntos
Adenosina Quinase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glicina N-Metiltransferase/deficiência , Adenosina/genética , Adenosina/metabolismo , Adenosina Quinase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Criança , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Epilepsia/complicações , Epilepsia/patologia , Feminino , Predisposição Genética para Doença , Glicina N-Metiltransferase/genética , Humanos , Lactente , Recém-Nascido , Hepatopatias/complicações , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Estudos Retrospectivos
8.
Mol Genet Metab ; 131(1-2): 107-113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32933822

RESUMO

Mitochondrial respiratory chain integrity depends on a number of proteins encoded by nuclear and mitochondrial genomes. Mutations of such factors can result in isolated or combined respiratory chain deficits, some of which can induce abnormal morphology of the mitochondrial network or accumulation of intermediary metabolites. Consequently, affected patients are clinically heterogeneous, presenting with central nervous system, muscular, or neurodegenerative disorders. ATAD3A is a nuclear-encoded ATPase protein of the AAA+ family and has been localized to the inner mitochondrial membrane. Recently reported mutations or large deletions in the ATDA3A gene in patients have been shown to induce altered mitochondrial structure and function and abnormal cholesterol metabolism in a recessive or dominant manner. Here, we report two siblings presenting axonal sensory-motor neuropathy associated with neonatal cataract. Genetic analyses identified two novel mutations in ATAD3A; a point mutation and an intronic 15 bp deletion affecting splicing and leading to exon skipping. Biochemical analysis in patient cells and tissues showed abnormal function of the mitochondrial respiratory chain in muscle and abnormal mitochondrial cristae structure. These new cases underline the large spectrum of biochemical and clinical presentations of ATAD3A deficiency and the different modes of inheritance, making it an atypical mitochondrial disorder.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Transporte de Elétrons/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Mutação/genética , Córtex Sensório-Motor/patologia , Irmãos
9.
PLoS Genet ; 13(4): e1006597, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376083

RESUMO

Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the "Turning calves syndrome", a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas de Transporte de Fosfato/genética , Polineuropatias/genética , Proteômica , Substituição de Aminoácidos/genética , Animais , Bovinos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Polineuropatias/patologia , Polineuropatias/veterinária
10.
Cell Mol Neurobiol ; 39(4): 551-568, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30302630

RESUMO

Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.


Assuntos
Progesterona/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Feminino , Humanos , Masculino , Neuroproteção , Receptores de Progesterona/metabolismo , Caracteres Sexuais , Transdução de Sinais
12.
Mol Genet Metab ; 123(4): 433-440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29433791

RESUMO

BACKGROUND AND OBJECTIVES: Patients affected with methylmalonic acidemia (MMA) and propionic acidemia (PA) exhibit diverse long-term complications and poor outcome. Liver disease is not a reported complication. The aim of this study was to characterize and extensively evaluate long-term liver involvement in MMA and PA patients. PATIENTS AND METHODS: We first describe four patients who had severe liver involvement during the course of their disease. Histology showed fibrosis and/or cirrhosis in 3 patients. Such liver involvement led us to retrospectively collect liver (clinical, laboratory and ultrasound) data of MMA (N = 12) or PA patients (N = 16) from 2003 to 2016. RESULTS: Alpha-fetoprotein (αFP) levels were increased in 8/16 and 3/12 PA and MMA patients, respectively, and tended to increase with age. Moderate and recurrent increase of GGT was observed in 4/16 PA patients and 4/12 MMA patients. Abnormal liver ultrasound with either hepatomegaly and/or hyperechoic liver was observed in 7/9 PA patients and 3/9 MMA patients. CONCLUSIONS: These data demonstrate that approximately half of the patients affected by MMA or PA had signs of liver abnormalities. The increase of αFP with age suggests progressive toxicity, which might be due to the metabolites accumulated in PA and MMA. These metabolites (e.g., methylmalonic acid and propionic acid derivatives) have previously been reported to have mitochondrial toxicity; this toxicity is confirmed by the results of histological and biochemical mitochondrial analyses of the liver in two of our MMA patients. In contrast to the moderate clinical, laboratory or ultrasound expression, severe pathological expression was found for three of the 4 patients who underwent liver biopsy, ranging from fibrosis to cirrhosis. These results emphasize the need for detailed liver function evaluation in organic aciduria patients, including liver biopsy when liver disease is suspected. TAKE HOME MESSAGE: MMA and PA patients exhibit long-term liver abnormalities.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Hepatopatias/etiologia , Hepatopatias/patologia , Acidemia Propiônica/complicações , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Adulto Jovem
13.
J Hum Genet ; 62(7): 729-731, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28275242

RESUMO

An isolated mitochondrial complex III (CIII) defect constitutes a rare cause of mitochondrial disorder. Here we present the second case involving UQCRC2 gene, which encodes core protein 2, one of the 11 structural subunits of CIII. The patient has the same mutation (c.547C>T; p.Arg183Trp) as the first case and presented with neonatal lactic acidosis, hypoglycemia and severe episodes of liver failure. Our study expands the few reported cases of CIII deficiency of nuclear origin.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Acidose Láctica/genética , Criança , Pré-Escolar , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Humanos , Hipoglicemia , Recém-Nascido , Falência Hepática , Doenças Mitocondriais , Mutação
14.
Am J Hum Genet ; 93(2): 384-9, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23910460

RESUMO

Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals' fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.


Assuntos
Citocromos c1/genética , Citocromos c/genética , Hiperglicemia/genética , Cetose/genética , Mutação , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Pré-Escolar , Consanguinidade , Citocromos c/metabolismo , Citocromos c1/metabolismo , Transporte de Elétrons , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Teste de Complementação Genética , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/enzimologia , Hiperglicemia/fisiopatologia , Insulina/farmacologia , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cetose/tratamento farmacológico , Cetose/enzimologia , Cetose/fisiopatologia , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pele/enzimologia , Pele/patologia
17.
Mol Genet Metab ; 113(3): 225-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25085279

RESUMO

BACKGROUND: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is an autosomal recessive disease due to mutations in ABCB11. ABCB11 encodes the bile salt export pump (BSEP), the major transporter responsible for biliary bile acid secretion, which expression is restricted to hepatocytes. In some patients, molecular analysis of ABCB11 revealed either exonic or intronic variations - including common polymorphisms - predicted to affect splicing according to in silico analysis or in vitro minigene studies. Transcript analysis in liver tissue is the best way to determine whether the variations predicted to affect splicing are deleterious or not. METHODS AND RESULTS: We performed ABCB11 transcript analysis in liver tissue from five PFIC2 patients who had variations which were predicted to either affect splicing or not. Among eleven variants tested, only the silent c.3003A>G variant and the intronic c.3213+4A>G variant led to abnormal splicing as suggested by in silico analysis. CONCLUSION: ABCB11 liver transcript analysis is a useful tool to confirm or invalidate the predicted splicing effect of a silent or intronic ABCB11 variation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/metabolismo , Fígado/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Íntrons , Mutação de Sentido Incorreto , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Med Genet ; 50(10): 704-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23847141

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5-40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. METHODS: We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. RESULTS: 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as 'hotspots' of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. CONCLUSIONS: Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação , Adolescente , Adulto , Idade de Início , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/epidemiologia , Fenótipo , Prevalência , Adulto Jovem
19.
Eur J Med Genet ; 67: 104889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029925

RESUMO

Mutated mito-ribosomal protein S2 (MRPS2) was already described in only three subjects, two with sensorineural hearing impairment, mild developmental delay, hypoglycemia, lactic acidemia and combined oxidative phosphorylation system deficiency and another, recently, presenting with a less severe phenotype. In order to expand the phenotype, we describe a new MRPS2 homozygous subject who shows particular features which have not yet been reported: initial microcephaly, joint hypermobility and autistic features.


Assuntos
Perda Auditiva Neurossensorial , Microcefalia , Humanos , Perda Auditiva Neurossensorial/genética , Microcefalia/genética , Fenótipo , Proteínas Ribossômicas/genética
20.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703036

RESUMO

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , França , Criança , Adulto , Masculino , Feminino , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Estudos de Coortes , Adulto Jovem , Lactente , Sequenciamento do Exoma , Idoso , Sequenciamento Completo do Genoma , DNA Mitocondrial/genética , Diagnóstico Diferencial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA