Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Blood ; 136(2): 210-223, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32219444

RESUMO

Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Integrina alfa6 , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Pirimidinas/farmacologia , Animais , Anticorpos Antineoplásicos/farmacologia , Anticorpos Neutralizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
2.
J Ultrasound Med ; 39(3): 589-595, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31633840

RESUMO

OBJECTIVES: This article reports a study of cell mechanics in patient-derived (primary) B-cell acute lymphocytic leukemia (ALL) cells treated with antibodies against integrins. Leukemia cell adhesion to stromal cells mediates chemotherapeutic drug resistance, also known as cell adhesion-mediated chemotherapeutic drug resistance. We have previously shown that antibodies against integrin α4 and α6 adhesion molecules can de-adhere ALL cells from stromal cells or counter-receptors. Because drug-resistant cells are more deformable, as evaluated by single-beam acoustic tweezers, we hypothesized that changes in cell mechanics might contribute to the de-adhesive effect of integrin-targeting antibodies. METHODS: In this study, the deformability of primary pre-B ALL cells was evaluated by single-beam acoustic tweezers after treatments with the de-adhering antibody Tysabri or P5G10 against integrin α4 and α6 adhesion molecules. RESULTS: We demonstrated that primary ALL cells treated with P5G10 expressed decreased deformability compared with immunoglobulin G1 -treated control cells (P < .05). Tysabri did not show an effect on deformability (P > .05). CONCLUSIONS: These results suggest that decreased deformability is associated with an integrin α6 blockade. Further assessments of the functional roles of deformability and integrin blockades in B-ALL cell drug resistance and deformability, respectively, are necessary.


Assuntos
Adesão Celular/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Integrinas/efeitos dos fármacos , Natalizumab/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Acústica , Células Cultivadas , Humanos , Imunoglobulina G/administração & dosagem , Ultrassonografia/métodos
3.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033444

RESUMO

Minimal residual disease (MRD) refers to a chemotherapy/radiotherapy-surviving leukemia cell population that gives rise to relapse of the disease. The detection of MRD is critical for predicting the outcome and for selecting the intensity of further treatment strategies. The development of various new diagnostic platforms, including next-generation sequencing (NGS), has introduced significant advances in the sensitivity of MRD diagnostics. Here, we review current methods to diagnose MRD through phenotypic marker patterns or differential gene patterns through analysis by flow cytometry (FCM), polymerase chain reaction (PCR), real-time quantitative polymerase chain reaction (RQ-PCR), reverse transcription polymerase chain reaction (RT-PCR) or NGS. Future advances in clinical procedures will be molded by practical feasibility and patient needs regarding greater diagnostic sensitivity.


Assuntos
Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
4.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669372

RESUMO

Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Isoenzimas , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resultado do Tratamento
5.
Blood ; 121(10): 1814-8, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23319569

RESUMO

Bone marrow (BM) provides chemoprotection for acute lymphoblastic leukemia (ALL) cells, contributing to lack of efficacy of current therapies. Integrin alpha4 (alpha4) mediates stromal adhesion of normal and malignant B-cell precursors, and according to gene expression analyses from 207 children with minimal residual disease, is highly associated with poorest outcome. We tested whether interference with alpha4-mediated stromal adhesion might be a new ALL treatment. Two models of leukemia were used, one genetic (conditional alpha4 ablation of BCR-ABL1 [p210(+)] leukemia) and one pharmacological (anti-functional alpha4 antibody treatment of primary ALL). Conditional deletion of alpha4 sensitized leukemia cell to nilotinib. Adhesion of primary pre-B ALL cells was alpha4-dependent; alpha4 blockade sensitized primary ALL cells toward chemotherapy. Chemotherapy combined with Natalizumab prolonged survival of NOD/SCID recipients of primary ALL, suggesting adjuvant alpha4 inhibition as a novel strategy for pre-B ALL.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/fisiologia , Integrina alfa4/química , Neoplasia Residual/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Adesão Celular , Criança , Citometria de Fluxo , Humanos , Integrases/metabolismo , Integrina alfa4/genética , Integrina alfa4/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Natalizumab , Neoplasia Residual/metabolismo , Neoplasia Residual/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia
6.
Blood ; 118(8): 2191-9, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21715311

RESUMO

Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL.


Assuntos
Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Animais , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Marcação de Genes , Humanos , Proteínas Inibidoras de Apoptose/deficiência , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Neoplasia Residual , Oligonucleotídeos/genética , Oligonucleotídeos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Survivina , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
7.
EMBO J ; 27(20): 2766-79, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18833193

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by an unusual deletion with neomorphic activity. This deletion derepresses genes in cis; however which candidate gene causes the FSHD phenotype, and through what mechanism, is unknown. We describe a novel genetic tool, inducible cassette exchange, enabling rapid generation of isogenetically modified cells with conditional and variable transgene expression. We compare the effects of expressing variable levels of each FSHD candidate gene on myoblasts. This screen identified only one gene with overt toxicity: DUX4 (double homeobox, chromosome 4), a protein with two homeodomains, each similar in sequence to Pax3 and Pax7. DUX4 expression recapitulates key features of the FSHD molecular phenotype, including repression of MyoD and its target genes, diminished myogenic differentiation, repression of glutathione redox pathway components, and sensitivity to oxidative stress. We further demonstrate competition between DUX4 and Pax3/Pax7: when either Pax3 or Pax7 is expressed at high levels, DUX4 is no longer toxic. We propose a hypothesis for FSHD in which DUX4 expression interferes with Pax7 in satellite cells, and inappropriately regulates Pax targets, including myogenic regulatory factors, during regeneration.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/metabolismo , Animais , Diferenciação Celular , Clonagem Molecular , Deleção de Genes , Glutationa/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Distrofia Muscular Facioescapuloumeral/metabolismo , Oxirredução , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fenótipo , Transgenes
8.
Exp Ther Med ; 23(1): 47, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34934426

RESUMO

Treatment of resistant or recurrent acute lymphoblastic leukemia (ALL) remains a challenge. It was previously demonstrated that the adhesion molecule integrin α4, referred to hereafter as α4, mediates the cell adhesion-mediated drug resistance (CAM-DR) of B-cell ALL by binding to vascular cell adhesion molecule-1 (VCAM-1) on bone marrow stroma. In addition, it was previously observed that the blockade of α4 with natalizumab or inhibition using the small molecule antagonist TBC3486 sensitized relapsed ALL cells to chemotherapy. However, α4-targeted therapy is not clinically available for the treatment of leukemia to date. In the present study, the use of a novel non-peptidic small molecule integrin α4 antagonist, AVA4746, as a potential new approach to combat drug-resistant B-ALL was explored. An in vitro co-culture = model of primary B-ALL cells and an in vivo xenograft model of patient-derived B-ALL cells were utilized for evaluation of AVA4746. VLA-4 conformation activation, cell adhesion/de-adhesion, endothelial tube formation, in vivo leukemia cell mobilization and survival assays were performed. AVA4746 exhibited high affinity for binding to B-ALL cells, where it also efficiently blocked ligand-binding to VCAM-1. In addition, AVA4746 caused the functional de-adhesion of primary B-ALL cells from VCAM-1. Inhibition of α4 using AVA4746 also prevented angiogenesis in vitro and when applied in combination with chemotherapy consisting of Vincristine, Dexamethasone and L-asparaginase, it prolonged the survival of ~33% of the mice in an in vivo xenograft model of B-ALL. These data implicate the potential of targeting the α4-VCAM-1 interaction using AVA4746 for the treatment of drug-resistant B-lineage ALL.

9.
Front Oncol ; 11: 766888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926269

RESUMO

The PI3K/Akt pathway-and in particular PI3Kδ-is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL. Previously, combination of BRD4 and PI3K inhibition with SF2523 was shown to successfully decrease Myc expression. However, the underlying mechanism and effect of dual inhibition of PI3Kδ/BRD4 in B-ALL remains unknown. To study this, we utilized SF2535, a novel small molecule dual inhibitor which can specifically target the PI3Kδ isoform and BRD4. We treated primary B-ALL cells with various concentrations of SF2535 and studied its effect on specific pharmacological on-target mechanisms such as apoptosis, cell cycle, cell proliferation, and adhesion molecules expression usingin vitro and in vivo models. SF2535 significantly downregulates both c-Myc mRNA and protein expression through inhibition of BRD4 at the c-Myc promoter site and decreases p-AKT expression through inhibition of the PI3Kδ/AKT pathway. SF2535 induced apoptosis in B-ALL by downregulation of BCL-2 and increased cleavage of caspase-3, caspase-7, and PARP. Moreover, SF2535 induced cell cycle arrest and decreased cell counts in B-ALL. Interestingly, SF2535 decreased the mean fluorescence intensity (MFI) of integrin α4, α5, α6, and ß1 while increasing MFI of CXCR4, indicating that SF2535 may work through inside-out signaling of integrins. Taken together, our data provide a rationale for the clinical evaluation of targeting PI3Kδ/BRD4 in refractory or relapsed B-ALL using SF2535.

10.
Exp Cell Res ; 315(15): 2624-36, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19460366

RESUMO

Mesenchymal stem cell preparations have been proposed for muscle regeneration in musculoskeletal disorders. Although MSCs have great in vitro expansion potential and possess the ability to differentiate into several mesenchymal lineages, myogenesis has proven to be much more difficult to induce. We have recently demonstrated that Pax3, the master regulator of the embryonic myogenic program, enables the in vitro differentiation of a murine mesenchymal stem cell line (MSCB9-Pax3) into myogenic progenitors. Here we show that injection of these cells into cardiotoxin-injured muscles of immunodeficient mice leads to the development of muscle tumors, resembling rhabdomyosarcomas. We then extended these studies to primary human mesenchymal stem cells (hMSCs) isolated from bone marrow. Upon genetic modification with a lentiviral vector encoding PAX3, hMSCs activated the myogenic program as demonstrated by expression of myogenic regulatory factors. Upon transplantation, the PAX3-modified MSCs did not generate rhabdomyosarcomas but rather, resulted in donor-derived myofibers. These were found at higher frequency in PAX3-transduced hMSCs than in mock-transduced MSCs. Nonetheless, neither engraftment of PAX3-modified or unmodified MSCs resulted in improved contractility. Thus these findings suggest that limitations remain to be overcome before MSC preparations result in effective treatment for muscular dystrophies.


Assuntos
Diferenciação Celular/fisiologia , Distrofina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Fatores de Transcrição Box Pareados/metabolismo , Recuperação de Função Fisiológica , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Distrofina/genética , Distrofina/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Neuregulina-1/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia
11.
Cells ; 9(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560076

RESUMO

Drug resistance is an obstacle in the therapy of acute lymphoblastic leukemia (ALL). Whether the physical properties such as the motility of the cells contribute to the survival of ALL cells after drug treatment has recently been of increasing interest, as they could potentially allow the metastasis of solid tumor cells and the migration of leukemia cells. We hypothesized that chemotherapeutic treatment may alter these physical cellular properties. To investigate the motility of chemotherapeutics-treated B-cell ALL (B-ALL) cells, patient-derived B-ALL cells were treated with chemotherapy for 7 days and left for 12 h without chemotherapeutic treatment. Two parameters of motility were studied, velocity and migration distance, using a time-lapse imaging system. The study revealed that compared to non-chemotherapeutically treated B-ALL cells, B-ALL cells that survived chemotherapy treatment after 7 days showed reduced motility. We had previously shown that Tysabri and P5G10, antibodies against the adhesion molecules integrins α4 and α6, respectively, may overcome drug resistance mediated through leukemia cell adhesion to bone marrow stromal cells. Therefore, we tested the effect of integrin α4 or α6 blockade on the motility of chemotherapeutics-treated ALL cells. Only integrin α4 blockade decreased the motility and velocity of two chemotherapeutics-treated ALL cell lines. Interestingly, integrin α6 blockade did not affect the velocity of chemoresistant ALL cells. This study explores the physical properties of the movements of chemoresistant B-ALL cells and highlights a potential link to integrins. Further studies to investigate the underlying mechanism are warranted.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagem , Imagem com Lapso de Tempo , Células da Medula Óssea/citologia , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Humanos , Integrina alfa4/farmacologia , Células Estromais/citologia , Imagem com Lapso de Tempo/métodos
12.
Sci Rep ; 8(1): 15708, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356155

RESUMO

The role of cell mechanics in cancer cells is a novel research area that has resulted in the identification of new mechanisms of therapy resistance. Single beam acoustic (SBA) tweezers are a promising technology for the quantification of the mechanical phenotype of cells. Our previous study showed that SBA tweezers can be used to quantify the deformability of adherent breast cancer cell lines. The physical properties of patient-derived (primary) pre-B acute lymphoblastic leukemia (ALL) cells involved in chemotherapeutic resistance have not been widely investigated. Here, we demonstrate the feasibility of analyzing primary pre-B ALL cells from four cases using SBA tweezers. ALL cells showed increased deformability with increasing acoustic pressure of the SBA tweezers. Moreover, ALL cells that are resistant to chemotherapeutic drugs were more deformable than were untreated ALL cells. We demonstrated that SBA tweezers can quantify the deformability of nonadherent leukemia cells and discriminate this mechanical phenotype in chemotherapy-resistant leukemia cells in a contact- and label-free manner.


Assuntos
Fenômenos Biomecânicos , Resistencia a Medicamentos Antineoplásicos , Pinças Ópticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Acústica , Linhagem Celular Tumoral , Forma Celular , Elasticidade , Humanos , Análise de Célula Única
13.
Exp Hematol ; 52: 1-11, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28479420

RESUMO

Cancer stem cells (CSCs), including leukemia stem cells (LSCs), exhibit self-renewal capacity and differentiation potential and have the capacity to maintain or renew and propagate a tumor/leukemia. The initial isolation of CSCs/LSCs was in adult myelogenous leukemia, although more recently, the existence of CSCs in a wide variety of other cancers has been reported. CSCs, in general, and LSCs, specifically with respect to this review, are responsible for initiation of disease, therapeutic resistance and ultimately disease relapse. One key focus in cancer research over the past decade has been the development of therapies that safely eliminate the LSC/CSC population. One major obstacle to this goal is the identification of key mechanisms that distinguish LSCs from normal endogenous hematopoietic stem cells. An additional daunting feature that has recently come to light with advances in next-generation sequencing and single-cell sequencing is the heterogeneity within leukemias/tumors, with multiple combinations of mutations, gain and loss of function of genes, and so on being capable of driving disease, even within the CSC/LSC population. The focus of this review/perspective is on our work in identifying and validating, in both chronic myelogenous leukemia and acute lymphoblastic leukemia, a safe and efficacious mechanism to target an evolutionarily conserved signaling nexus, which constitutes a common "Achilles heel" for LSCs/CSCs, using small molecule-specific CBP/catenin antagonists.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirimidinonas/farmacologia , beta Catenina/antagonistas & inibidores , gama Catenina/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ligação Proteica/efeitos dos fármacos , beta Catenina/metabolismo , gama Catenina/metabolismo
14.
PLoS One ; 12(11): e0187684, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117236

RESUMO

We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into "clinical" benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.


Assuntos
Regulação Neoplásica da Expressão Gênica , Integrina alfa4/antagonistas & inibidores , Oligonucleotídeos Antissenso/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Animais , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Humanos , Injeções Intravenosas , Injeções Subcutâneas , Integrina alfa4/genética , Integrina alfa4/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Oligonucleotídeos Antissenso/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancers (Basel) ; 9(9)2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28891959

RESUMO

The quest continues for targeted therapies to reduce the morbidity of chemotherapy and to improve the response of resistant leukemia. Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stromal cells triggers intracellular signals that promote cell-adhesion-mediated drug resistance (CAM-DR). Idelalisib, an U.S. Food and Drug Administration (FDA)-approved PI3Kδ-specific inhibitor has been shown to be effective in CLL in down-regulating p-Akt and prolonging survival in combination with Rituximab; herein we explore the possibility of its use in B ALL and probe the mechanism of action. Primary B ALL in contact with OP9 stromal cells showed increased p-Aktser473. Idelalisib decreased p-Akt in patient samples of ALL with diverse genetic lesions. Addition of idelalisib to vincristine inhibited proliferation when compared to vincristine monotherapy in a subset of samples tested. Idelalisib inhibited ALL migration to SDF-1α in vitro and blocked homing of ALL cells to the bone marrow in vivo. This report tests PI3Kδ inhibitors in a more diverse group of ALL than has been previously reported and is the first published report of idelalisib inhibiting homing of ALL cells to bone marrow. Our data support further pre-clinical evaluation of idelalisib for the therapy of B ALL.

17.
Neuroreport ; 15(11): 1731-4, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15257137

RESUMO

Human umbilical cord blood (UCB) contains hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), both of which are regarded as valuable sources for cell transplantation and cell therapy. Adherent cells expressing MSCs-related antigens such as SH2, CD13, CD29, and ASMA, have been isolated from a mononuclear cell fraction of human UCB. Under proneurogenic conditions, these UCB-derived adherent cells rapidly assumed the morphology of multipolar neurons. Both immunofluorescence and RT-PCR analyses indicated that the expression of a number of neural markers including Tuj1, TrkA, GFAP and CNPases, was markedly elevated during this acute differentiation. The neurogenic potential of UCB-derived may facilitate stem cell therapeutic approaches to neurodegenerative diseases.


Assuntos
Diferenciação Celular/fisiologia , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Sangue Fetal/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Neurônios/citologia , Neurônios/fisiologia
18.
Curr Cancer Drug Targets ; 11(2): 213-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21158719

RESUMO

Previously, we demonstrated that survivin expression is CBP/ß-catenin/TCF-dependent. Now, using NCI-H28 cells, which harbor a homozygous deletion of ß-catenin, we demonstrate that survivin transcription can similarly be mediated by nuclear γ-catenin. ICG-001, a specific inhibitor of binding to the N-terminus of CBP, effectively attenuates survivin expression. We demonstrate that γ-catenin by binding to TCF family members and specifically recruiting the coactivator CBP drives survivin transcription particularly in ß-catenin-deficient cells. We also examined the relative expression of γ-catenin and ß-catenin in 90 cases of chronic myeloid leukemia (CML) in a published gene expression microarray data base. A statistically significant negative correlation between γ-catenin and ß-catenin was found in AP/BC cases (-0.389, P = 0.006). Furthermore, in subsequent independent validation studies by qPCR in 28 CP and BC patients increased γ-catenin expression predominated in BC cases and was associated with concomitantly increased survivin expression. Gene expression was 3- and 6-fold greater in BC patients as compared to CP patients, for γ-catenin and survivin, respectively. Consistent with this observation, nuclear γ-catenin accumulation was evident in this population consistent with a potential transcriptional role. Combined treatment with imatinib mesylate (IM) and ICG-001 significantly inhibited colony formation in sorted CD34(+) CML progenitors (survivin(+)/γ-catenin(high)/ß-catenin(low)) isolated from one BC and one AP patient resistant to IM. Therefore, we believe that the ability of ICG-001 to block both the CBP/γ-catenin interaction and the CBP/ß-catenin interaction may have clinical significance in cancers in which γ-catenin plays a significant transcriptional role.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Transcrição Gênica , beta Catenina/metabolismo , gama Catenina/metabolismo , Animais , Antígenos CD34/metabolismo , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Pirimidinonas/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/metabolismo , Survivina , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica/efeitos dos fármacos , beta Catenina/genética , gama Catenina/genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
19.
Exp Cell Res ; 314(8): 1721-33, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18395202

RESUMO

Mesenchymal stem cells (MSCs) residing within the bone marrow (BM) differentiate into multiple lineages, including fat, bone, and cartilage. Because MSCs are multipotent and have a great capacity to be expanded in vitro, these cells are an attractive candidate for clinical applications to repair or regenerate damaged tissues of mesenchymal origin. However, application of MSCs to muscle degenerative diseases has been hampered by the poor differentiation of MSCs into the muscle lineage. To date most methods require the presence of strong non-physiological agents, such as azacytidine. In the present study we explored the potential of Pax3, the master regulator of the embryonic myogenic program, to promote myogenic differentiation from MSCs. Our results clearly demonstrate that Pax3 promotes the differentiation of MSCs towards the myogenic lineage, which occurs at the expense of other mesenchymal lineages including fat, bone, and cartilage. This effect is cell type-selective since Pax3 overexpression in endothelial cells fails to promote myogenesis. These results highlight the potential of regulating transcriptional pathways to direct differentiation of adult stem cells.


Assuntos
Células-Tronco Mesenquimais/citologia , Células Musculares/citologia , Fatores de Transcrição Box Pareados/metabolismo , Adipogenia , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Condrogênese , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Fator de Transcrição PAX3
20.
Stem Cells ; 23(4): 584-93, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15790779

RESUMO

Mesenchymal stem cells (MSCs) retain both self-renewal and multilineage differentiation capabilities. Despite wide therapeutic potential, many aspects of human MSCs, particularly the molecular parameters to define the stemness, remain largely unknown. Using high-density oligonucleotide micro-arrays, we obtained the differential gene expression profile between a fraction of mononuclear cells of human umbilical cord blood (UCB) and its MSC subpopulation. Of particular interest was a subset of 47 genes preferentially expressed at 50-fold or higher in MSCs, which could be regarded as a molecular foundation of human MSCs. This subset contains numerous genes encoding collagens, other extracellular matrix or related proteins, cytokines or growth factors, and cytoskeleton-associated proteins but very few genes for membrane and nuclear proteins. In addition, a direct comparison of this microarray-generated transcriptome with the published serial analysis of gene expression data suggests that a molecular context of UCB-derived MSCs is more or less similar to that of bone marrow-derived cells. Altogether, our results will provide a basis for studies on molecular mechanisms controlling core properties of human MSCs.


Assuntos
Sangue Fetal/citologia , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA