Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.375
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38917788

RESUMO

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

2.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447573

RESUMO

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Assuntos
Apresentação de Antígeno , Neoplasias , Neutrófilos , Animais , Humanos , Camundongos , Antígenos de Neoplasias , Leucina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/metabolismo , Linfócitos T , Análise da Expressão Gênica de Célula Única
3.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379837

RESUMO

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Assuntos
Edição de Genes , Proteínas , Proteínas/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA , Sistemas CRISPR-Cas , Citosina/metabolismo
4.
Cell ; 186(12): 2656-2671.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295403

RESUMO

Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.


Assuntos
Brassica napus , Plasmodioforídeos , Microscopia Crioeletrônica , Chumbo , Brassica napus/genética , Plasmodioforídeos/fisiologia , Canais Iônicos , Doenças das Plantas
5.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562403

RESUMO

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Assuntos
Briófitas , Mudança Climática , Ecossistema , Aclimatação , Adaptação Fisiológica , Tibet , Briófitas/fisiologia
6.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539781

RESUMO

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Assuntos
Produtos Agrícolas/genética , Domesticação , Oryza/genética , Sistemas CRISPR-Cas , Segurança Alimentar , Edição de Genes , Variação Genética , Genoma de Planta , Oryza/classificação , Poliploidia
7.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34051138

RESUMO

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Assuntos
Ecótipo , Variação Genética , Genoma de Planta , Oryza/genética , Adaptação Fisiológica/genética , Agricultura , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Estrutural do Genoma , Anotação de Sequência Molecular , Fenótipo
8.
Cell ; 179(2): 561-577.e22, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585088

RESUMO

We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Frutose-Bifosfato Aldolase/genética , Vírus da Hepatite B , Hepatite B Crônica/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Proteogenômica/métodos , beta Catenina/genética , Animais , Proliferação de Células , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Microambiente Tumoral/genética
9.
Immunity ; 56(1): 180-192.e11, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563676

RESUMO

The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.


Assuntos
Carcinoma Hepatocelular , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Imunoglobulina G , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia/métodos
10.
Nature ; 627(8004): 586-593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355797

RESUMO

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Assuntos
Carcinoma Hepatocelular , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Hepáticas , Mutação , Sequenciamento Completo do Genoma , Humanos , Ácidos Aristolóquicos/metabolismo , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , China , Cromotripsia , Progressão da Doença , DNA Circular/genética , População do Leste Asiático/genética , Evolução Molecular , Genoma Humano/genética , Vírus da Hepatite B/genética , Mutação INDEL/genética , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Mutação/genética , Metástase Neoplásica/genética , Fases de Leitura Aberta/genética , Reprodutibilidade dos Testes
11.
Nature ; 625(7995): 494-499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233619

RESUMO

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

13.
Nature ; 606(7914): 527-534, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676474

RESUMO

Missing heritability in genome-wide association studies defines a major problem in genetic analyses of complex biological traits1,2. The solution to this problem is to identify all causal genetic variants and to measure their individual contributions3,4. Here we report a graph pangenome of tomato constructed by precisely cataloguing more than 19 million variants from 838 genomes, including 32 new reference-level genome assemblies. This graph pangenome was used for genome-wide association study analyses and heritability estimation of 20,323 gene-expression and metabolite traits. The average estimated trait heritability is 0.41 compared with 0.33 when using the single linear reference genome. This 24% increase in estimated heritability is largely due to resolving incomplete linkage disequilibrium through the inclusion of additional causal structural variants identified using the graph pangenome. Moreover, by resolving allelic and locus heterogeneity, structural variants improve the power to identify genetic factors underlying agronomically important traits leading to, for example, the identification of two new genes potentially contributing to soluble solid content. The newly identified structural variants will facilitate genetic improvement of tomato through both marker-assisted selection and genomic selection. Our study advances the understanding of the heritability of complex traits and demonstrates the power of the graph pangenome in crop breeding.


Assuntos
Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Solanum lycopersicum , Alelos , Produtos Agrícolas/genética , Genoma de Planta/genética , Desequilíbrio de Ligação , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
14.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

15.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975381

RESUMO

Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Metionina , Suplementos Nutricionais
16.
Mol Cell Proteomics ; 23(2): 100707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154692

RESUMO

Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples. One of the primary challenges associated with this technology is the relatively low rate of phosphopeptide identification during data analysis. This limitation hampers the full realization of the potential offered by shotgun phosphoproteomics. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19% to 46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Fosforilação , Fosfopeptídeos/metabolismo , Proteômica
17.
Proc Natl Acad Sci U S A ; 120(43): e2219491120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37851678

RESUMO

In conventional superconductors, electron-phonon coupling plays a dominant role in generating superconductivity. In high-temperature cuprate superconductors, the existence of electron coupling with phonons and other boson modes and its role in producing high-temperature superconductivity remain unclear. The evidence of electron-boson coupling mainly comes from angle-resolved photoemission (ARPES) observations of [Formula: see text]70-meV nodal dispersion kink and [Formula: see text]40-meV antinodal kink. However, the reported results are sporadic and the nature of the involved bosons is still under debate. Here we report findings of ubiquitous two coexisting electron-mode couplings in cuprate superconductors. By taking ultrahigh-resolution laser-based ARPES measurements, we found that the electrons are coupled simultaneously with two sharp modes at [Formula: see text]70meV and [Formula: see text]40meV in different superconductors with different dopings, over the entire momentum space and at different temperatures above and below the superconducting transition temperature. These observations favor phonons as the origin of the modes coupled with electrons and the observed electron-mode couplings are unusual because the associated energy scales do not exhibit an obvious energy shift across the superconducting transition. We further find that the well-known "peak-dip-hump" structure, which has long been considered a hallmark of superconductivity, is also omnipresent and consists of "peak-double dip-double hump" finer structures that originate from electron coupling with two sharp modes. These results provide a unified picture for the [Formula: see text]70-meV and [Formula: see text]40-meV energy scales and their evolutions with momentum, doping and temperature. They provide key information to understand the origin of these energy scales and their role in generating anomalous normal state and high-temperature superconductivity.

18.
Gastroenterology ; 166(6): 1130-1144.e8, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262581

RESUMO

BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Proteína Exportina 1 , Carioferinas , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Receptores Citoplasmáticos e Nucleares , Ubiquitina-Proteína Ligases , Humanos , Senescência Celular/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Sinergismo Farmacológico , Senoterapia/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Hep G2 , Camundongos , Piperazinas , Piridinas , Triazóis
19.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588208

RESUMO

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Assuntos
MicroRNAs , Poli A , Animais , Haploidia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Espermátides/metabolismo
20.
Hepatology ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985971

RESUMO

BACKGROUND AND AIMS: Gut microbiota play a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Interleukin-33 (IL-33) is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS: In both human and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild type (WT) mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N-oxide (TMAO)-producing bacteria. Inhibition of TMAO synthesis by 3,3-dimethyl-1-butanol (DMB) mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia inducible factor-1α (HIF-1α) and suppressed its activation, directly damaging the integrity of intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2-Hif1a-Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS: Intestinal IL-33 enhanced gut microbiota-derived TMAO synthesis and aggravated MASLD progression through dual regulation on HIF-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA