RESUMO
This paper introduces an innovative approach to 3D environmental mapping through the integration of a compact, handheld sensor package with a two-stage sensor fusion pipeline. The sensor package, incorporating LiDAR, IMU, RGB, and thermal cameras, enables comprehensive and robust 3D mapping of various environments. By leveraging Simultaneous Localization and Mapping (SLAM) and thermal imaging, our solution offers good performance in conditions where global positioning is unavailable and in visually degraded environments. The sensor package runs a real-time LiDAR-Inertial SLAM algorithm, generating a dense point cloud map that accurately reconstructs the geometric features of the environment. Following the acquisition of that point cloud, we post-process these data by fusing them with images from the RGB and thermal cameras and produce a detailed, color-enriched 3D map that is useful and adaptable to different mission requirements. We demonstrated our system in a variety of scenarios, from indoor to outdoor conditions, and the results showcased the effectiveness and applicability of our sensor package and fusion pipeline. This system can be applied in a wide range of applications, ranging from autonomous navigation to smart agriculture, and has the potential to make a substantial benefit across diverse fields.
RESUMO
In China, atmospheric pollution exhibits a complex pattern, with simultaneous exceedances of fine particulate matter ï¼PM2.5ï¼ and ozone ï¼O3ï¼ levels becoming evident. To understand the complex pollution characteristics and evolution patterns of PM2.5 and O3 in Bozhou City, various methods such as weather classification, analysis of typical pollution processes, and investigation of precursor sources were employed to explore the pollution and variations of PM2.5 and O3 in Bozhou City from 2017 to 2022 and subsequently analyze their causes and precursor sources. The results indicated thatï¼ â PM2.5-O3 complex pollution in Bozhou City mostly occurred under high-pressure weather conditions, with daytime high temperatures and low humidity promoting the formation of O3 pollution, whereas nighttime high humidity and atmospheric oxidative conditions promoted the generation of secondary components such as nitrates and ammonium salts in PM2.5. â¡ During the pollution process, PM2.5 in Bozhou City mainly originated from biomass burning, secondary generation, traffic pollution, coal combustion, and dust sources. Volatile organic compounds ï¼VOCsï¼ primarily emerged from plant sources, traffic pollution, oil and gas evaporation, solvent use, fossil fuel combustion, residential emissions, and industrial emissions. Biomass burning and traffic pollution made significant contributions to the pollution process. ⢠Analysis of air mass trajectories and regional pollution situations indicated that the overlay of northern and southern air masses, along with local generation, were the main causes of the PM2.5-O3 complex pollution in Bozhou from October 18th to 27th, 2022.