Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(11): 1992-2005.e9, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35417664

RESUMO

Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.


Assuntos
Fosfolipídeos , Proteínas Proto-Oncogênicas B-raf , Fosfolipases A2 , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/metabolismo
2.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993715

RESUMO

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Ácidos Oleicos , Animais , Bovinos , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Laticínios , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Leite/química , Neoplasias/dietoterapia , Neoplasias/imunologia , Ácidos Oleicos/farmacologia , Ácidos Oleicos/uso terapêutico , Carne Vermelha , Ovinos
3.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34289383

RESUMO

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Assuntos
Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Acetilação , Animais , Antineoplásicos/farmacologia , Feminino , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/genética , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mutação/genética , NADP/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Cultura Primária de Células , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/metabolismo
4.
Nature ; 612(7940): 519-527, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477534

RESUMO

In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.


Assuntos
Transdução de Sinais , Duração do Sono , Transcrição Gênica , Animais , Camundongos , Regulação da Expressão Gênica , Fosforilação , Transdução de Sinais/fisiologia , Sono de Ondas Lentas/genética , Perfilação da Expressão Gênica
5.
Mol Cell ; 76(6): 857-871.e9, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31586547

RESUMO

The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gluconatos/metabolismo , Neoplasias/enzimologia , Proteína Fosfatase 2/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proliferação de Células , Ativação Enzimática , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células HEK293 , Células HT29 , Humanos , Células K562 , Células MCF-7 , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Via de Pentose Fosfato , Ligação Proteica , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribulosefosfatos/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Carga Tumoral , Quinases da Família src/metabolismo
6.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197664

RESUMO

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Assuntos
Bass , Rhabdoviridae , Vacinas , Animais , Feminino , Simulação de Acoplamento Molecular , Epitopos , Glicoproteínas , Desenvolvimento de Vacinas
7.
Mol Cell ; 69(6): 923-937.e8, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547721

RESUMO

Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/genética , Sulfatos de Condroitina/toxicidade , Suplementos Nutricionais/toxicidade , Melanoma/induzido quimicamente , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/induzido quimicamente , Animais , Antinematódeos/farmacologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , GTP Fosfo-Hidrolases/genética , Células HEK293 , Células HT29 , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos Transgênicos , Células NIH 3T3 , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36752363

RESUMO

Incorporating the genotypic and phenotypic of the correlated traits into the multi-trait model can significantly improve the prediction accuracy of the target trait in animal and plant breeding, as well as human genetics. However, in most cases, the phenotypic information of the correlated and target trait of the individual to be evaluated was null simultaneously, particularly for the newborn. Therefore, we propose a machine learning framework, MAK, to improve the prediction accuracy of the target trait by constructing the multi-target ensemble regression chains and selecting the assistant trait automatically, which predicted the genomic estimated breeding values of the target trait using genotypic information only. The prediction ability of MAK was significantly more robust than the genomic best linear unbiased prediction, BayesB, BayesRR and the multi trait Bayesian method in the four real animal and plant datasets, and the computational efficiency of MAK was roughly 100 times faster than BayesB and BayesRR.


Assuntos
Modelos Genéticos , Melhoramento Vegetal , Animais , Humanos , Recém-Nascido , Teorema de Bayes , Fenótipo , Genômica/métodos , Genótipo , Aprendizado de Máquina
9.
Nat Chem Biol ; 19(1): 45-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138140

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Ácidos Nucleicos/genética , Genoma , Sistemas CRISPR-Cas/genética
10.
Chem Rev ; 123(12): 7782-7853, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37186942

RESUMO

The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.


Assuntos
Anticorpos , Imunoconjugados , Anticorpos/uso terapêutico , Imunoconjugados/uso terapêutico , Biotecnologia , Oligonucleotídeos
11.
Proc Natl Acad Sci U S A ; 119(11): e2106201119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254904

RESUMO

SignificanceDue to market and system failures, policies and programs at the local level are needed to accelerate the renewable energy transition. A voluntary environmental program (VEP), such as SolSmart, can encourage local governments to adopt solar-friendly best practices. Unlike previous research, this study uses a national sample, more recent data, and a matched control group for difference-in-differences estimation to quantify the causal impact of a VEP in the public, rather than private, sector. We offer empirical evidence that SolSmart increased installed solar capacity and, with less statistical significance, the number of solar installations. The results inform the design of sustainability-focused VEPs and future research to understand the causal pathways between local governments' voluntary actions and solar market development.

12.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041932

RESUMO

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Oxigênio Singlete/metabolismo , Transcriptoma , Estômatos de Plantas/metabolismo
13.
BMC Genomics ; 25(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166541

RESUMO

BACKGROUND: There has been a significant surge in the global prevalence of diabetes mellitus (DM), which increases the susceptibility of individuals to ovarian cancer (OC). However, the relationship between DM and OC remains largely unexplored. The objective of this study is to provide preliminary insights into the shared molecular regulatory mechanisms and potential biomarkers between DM and OC. METHODS: Multiple datasets from the GEO database were utilized for bioinformatics analysis. Single cell datasets from the GEO database were analysed. Subsequently, immune cell infiltration analysis was performed on mRNA expression data. The intersection of these datasets yielded a set of common genes associated with both OC and DM. Using these overlapping genes and Cytoscape, a protein‒protein interaction (PPI) network was constructed, and 10 core targets were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then conducted on these core targets. Additionally, advanced bioinformatics analyses were conducted to construct a TF-mRNA-miRNA coregulatory network based on identified core targets. Furthermore, immunohistochemistry staining (IHC) and real-time quantitative PCR (RT-qPCR) were employed for the validation of the expression and biological functions of core proteins, including HSPAA1, HSPA8, SOD1, and transcription factors SREBF2 and GTAT2, in ovarian tumors. RESULTS: The immune cell infiltration analysis based on mRNA expression data for both DM and OC, as well as analysis using single-cell datasets, reveals significant differences in mononuclear cell levels. By intersecting the single-cell datasets, a total of 119 targets related to mononuclear cells in both OC and DM were identified. PPI network analysis further identified 10 hub genesincludingHSP90AA1, HSPA8, SNRPD2, UBA52, SOD1, RPL13A, RPSA, ITGAM, PPP1CC, and PSMA5, as potential targets of OC and DM. Enrichment analysis indicated that these genes are primarily associated with neutrophil degranulation, GDP-dissociation inhibitor activity, and the IL-17 signaling pathway, suggesting their involvement in the regulation of the tumor microenvironment. Furthermore, the TF-gene and miRNA-gene regulatory networks were validated using NetworkAnalyst. The identified TFs included SREBF2, GATA2, and SRF, while the miRNAs included miR-320a, miR-378a-3p, and miR-26a-5p. Simultaneously, IHC and RT-qPCR reveal differential expression of core targets in ovarian tumors after the onset of diabetes. RT-qPCR further revealed that SREBF2 and GATA2 may influence the expression of core proteins, including HSP90AA1, HSPA8, and SOD1. CONCLUSION: This study revealed the shared gene interaction network between OC and DM and predicted the TFs and miRNAs associated with core genes in monocytes. Our research findings contribute to identifying potential biological mechanisms underlying the relationship between OC and DM.


Assuntos
Diabetes Mellitus , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Superóxido Dismutase-1 , MicroRNAs/genética , Neoplasias Ovarianas/genética , Biologia Computacional , RNA Mensageiro , Redes Reguladoras de Genes , Microambiente Tumoral/genética
14.
BMC Genomics ; 25(1): 138, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310206

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are the foundation cells for continual spermatogenesis and germline regeneration in mammals. SSC activities reside in the undifferentiated spermatogonial population, and currently, the molecular identities of SSCs and their committed progenitors remain unclear. RESULTS: We performed single-cell transcriptome analysis on isolated undifferentiated spermatogonia from mice to decipher the molecular signatures of SSC fate transitions. Through comprehensive analysis, we delineated the developmental trajectory and identified candidate transcription factors (TFs) involved in the fate transitions of SSCs and their progenitors in distinct states. Specifically, we characterized the Asingle spermatogonial subtype marked by the expression of Eomes. Eomes+ cells contained enriched transplantable SSCs, and more than 90% of the cells remained in the quiescent state. Conditional deletion of Eomes in the germline did not impact steady-state spermatogenesis but enhanced SSC regeneration. Forced expression of Eomes in spermatogenic cells disrupted spermatogenesis mainly by affecting the cell cycle progression of undifferentiated spermatogonia. After injury, Eomes+ cells re-enter the cell cycle and divide to expand the SSC pool. Eomes+ cells consisted of 7 different subsets of cells at single-cell resolution, and genes enriched in glycolysis/gluconeogenesis and the PI3/Akt signaling pathway participated in the SSC regeneration process. CONCLUSIONS: In this study, we explored the molecular characteristics and critical regulators of subpopulations of undifferentiated spermatogonia. The findings of the present study described a quiescent SSC subpopulation, Eomes+ spermatogonia, and provided a dynamic transcriptional map of SSC fate determination.


Assuntos
Análise da Expressão Gênica de Célula Única , Testículo , Masculino , Animais , Camundongos , Testículo/metabolismo , Espermatogônias , Espermatogênese/genética , Células-Tronco , Diferenciação Celular/genética , Mamíferos/genética
15.
J Neurochem ; 168(3): 224-237, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38214332

RESUMO

Serum amyloid A (SAA) is a clinically useful inflammatory marker involved in the pathogenesis of autoimmune diseases. This study aimed to explore the SAA levels in a cohort of patients with myasthenia gravis (MG) in relation to disease-related clinical parameters and myasthenic crisis (MC) and elucidate the effects of SAA on immune response. A total of 82 MG patients including 50 new-onset MG patients and 32 MC patients were enrolled in this study. Baseline data and laboratory parameters of all enrolled MG patients were routinely recorded through electronic medical systems. SAA levels were measured by enzyme-linked immunosorbent assay (ELISA) kit. CD4+ T and CD19+ B cell subsets were analyzed by flow cytometry. In vitro, human recombinant SAA (Apo-SAA) was applied to stimulate peripheral blood mononuclear cells (PBMCs) from MG patients to observe the effect on T and B cell differentiation. Our results indicated that SAA levels in new-onset MG patients were higher than those in controls and were positively correlated with QMG score, MGFA classification, plasmablast cells, IL-6, and IL-17 levels. Subgroup analysis revealed that SAA levels were increased in generalized MG (GMG) patients than in ocular MG (OMG), as well as elevated in late-onset MG (LOMG) than in early-onset MG (EOMG) and higher in MGFA III/IV compared with MGFA I/II. The ROC curve demonstrated that SAA showed good diagnostic value for MC, especially when combined with NLR. In vitro, Apo-SAA promoted the Th1 cells, Th17 cells, plasmablast cells, and plasma cells differentiation in MG PBMCs. The present findings suggested that SAA was increased in MG patients and promoted expansion of CD4+ T cell and CD19+ B cell subsets, which implicated in the severity of MG patients.


Assuntos
Subpopulações de Linfócitos B , Miastenia Gravis , Humanos , Leucócitos Mononucleares , Miastenia Gravis/diagnóstico , Proteína Amiloide A Sérica , Células Th1
16.
Small ; : e2312251, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461521

RESUMO

Solid-state Li-ion batteries have emerged as the most promising next-generation energy storage systems, offering theoretical advantages such as superior safety and higher energy density. However, polymer-based solid-state Li-ion batteries face challenges across wide temperature ranges. The primary issue lies in the fact that most polymer electrolytes exhibit relatively low ionic conductivity at or below room temperature. This sensitivity to temperature variations poses challenges in operating solid-state lithium batteries at sub-zero temperatures. Moreover, elevated working temperatures lead to polymer shrinkage and deformation, ultimately resulting in battery failure. To address this challenge of polymer-based solid-state batteries, this review presents an overview of various promising polymer electrolyte systems. The review provides insights into the temperature-dependent physical and electrochemical properties of polymers, aiming to expand the temperature range of operation. The review also further summarizes modification strategies for polymer electrolytes suited to diverse temperatures. The final section summarizes the performance of various polymer-based solid-state batteries at different temperatures. Valuable insights and potential future research directions for designing wide-temperature polymer electrolytes are presented based on the differences in battery performance. This information is intended to inspire practical applications of wide-temperature polymer-based solid-state batteries.

17.
NMR Biomed ; : e5176, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884131

RESUMO

Early tumor response prediction can help avoid overtreatment with unnecessary chemotherapy sessions. It is important to determine whether multiple apparent diffusion coefficient indices (S index, ADC-diff) are effective in the early prediction of pathological response to neoadjuvant chemotherapy (NAC) in breast cancer (BC). Patients with stage II and III BCs who underwent T1WI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI using a 3 T system were included. They were divided into two groups: major histological responders (MHRs, Miller-Payne G4/5) and nonmajor histological responders (nMHRs, Miller-Payne G1-3). Three b values were used for DWI to derive the S index; ADC-diff values were obtained using b = 0 and 1000 s/mm2. The different interquartile ranges of percentile S-index and ADC-diff values after treatment were calculated and compared. The assessment was performed at baseline and after two and four NAC cycles. A total of 59 patients were evaluated. There are some correlations of interquartile ranges of S-index parameters and ADC-diff values with histopathological prognostic factors (such as estrogen receptor and human epidermal growth factor receptor 2 expression, all p < 0.05), but no significant differences were found in some other interquartile ranges of S-index parameters or ADC-diff values between progesterone receptor positive and negative or for Ki-67 tumors (all P > 0.05). No differences were found in the dynamic contrast-enhanced MRI characteristics between the two groups. HER-2 expression and kurtosis of the S-index distribution were screened out as independent risk factors for predicting MHR group (p < 0.05, area under the curve (AUC) = 0.811) before NAC. After early NAC (two cycles), only the 10th percentile S index was statistically significant between the two groups (p < 0.05, AUC = 0.714). No significant differences were found in ADC-diff value at any time point of NAC between the two groups (P > 0.1). These findings demonstrate that the S-index value may be used as an early predictor of pathological response to NAC in BC; the value of ADC-diff as an imaging biomarker of NAC needs to be further confirmed by ongoing multicenter prospective trials.

19.
J Magn Reson Imaging ; 59(1): 164-176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013673

RESUMO

BACKGROUND: Poorly controlled type 2 diabetes mellitus (T2DM) is known to result in left ventricular (LV) dysfunction, myocardial fibrosis, and ischemic/nonischemic dilated cardiomyopathy (ICM/NIDCM). However, less is known about the prognostic value of T2DM on LV longitudinal function and late gadolinium enhancement (LGE) assessed with cardiac MRI in ICM/NIDCM patients. PURPOSE: To measure LV longitudinal function and myocardial scar in ICM/NIDCM patients with T2DM and to determine their prognostic values. STUDY TYPE: Retrospective cohort. POPULATION: Two hundred thirty-five ICM/NIDCM patients (158 with T2DM and 77 without T2DM). FIELD STRENGTH/SEQUENCE: 3T; steady-state free precession cine; phase-sensitive inversion recovery segmented gradient echo LGE sequences. ASSESSMENT: Global peak longitudinal systolic strain rate (GLPSSR) was evaluated to LV longitudinal function with feature tracking. The predictive value of GLPSSR was determined with ROC curve. Glycated hemoglobin (HbA1c) was measured. The primary adverse cardiovascular endpoint was follow up every 3 months. STATISTICAL TESTS: Mann-Whitney U test or student's t-test; Intra and inter-observer variabilities; Kaplan-Meier method; Cox proportional hazards analysis (threshold = 5%). RESULTS: ICM/NIDCM patients with T2DM exhibited significantly lower absolute value of GLPSSR (0.39 ± 0.14 vs. 0.49 ± 0.18) and higher proportion of LGE positive (+) despite similar LV ejection fraction, compared to without T2DM. LV GLPSSR was able to predict primary endpoint (AUC 0.73) and optimal cutoff point was 0.4. ICM/NIDCM patients with T2DM (GLPSSR < 0.4) had more markedly impaired survival. Importantly, this group (GLPSSR < 0.4, HbA1c ≥ 7.8%, or LGE (+)) exhibited the worst survival. In multivariate analysis, GLPSSR, HbA1c, and LGE (+) significantly predicted primary adverse cardiovascular endpoint in overall ICM/NIDCM and ICM/NIDCM patients with T2DM. CONCLUSIONS: T2DM has an additive deleterious effect on LV longitudinal function and myocardial fibrosis in ICM/NIDCM patients. Combining GLPSSR, HbA1c, and LGE could be promising markers in predicting outcomes in ICM/NIDCM patients with T2DM. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: 5.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Diabetes Mellitus Tipo 2 , Disfunção Ventricular Esquerda , Humanos , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico por imagem , Prognóstico , Estudos Retrospectivos , Diabetes Mellitus Tipo 2/complicações , Meios de Contraste , Hemoglobinas Glicadas , Imagem Cinética por Ressonância Magnética/métodos , Gadolínio , Função Ventricular Esquerda , Fibrose , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Isquemia
20.
Ann Hematol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879649

RESUMO

Erdheim-Chester disease (ECD) is a rare histiocytosis that tends to co-exist with other myeloid malignancies. Here, we use genetic and transcriptomic sequencing to delineate a case of co-occurring BRAFV600E-mutated ECD and acute myeloid leukemia (AML), followed by AML remission and relapse. The AML relapse involved the extinction of clones with KMT2A-AFDN and FLT3-ITD, and the predominance of PTPN11-mutated subclones with distinct transcriptomic features. This case report has highlighted the screening for other myeloid malignancies at the diagnosis of ECD and the clinical significance of PTPN11-mutated AML subclones that require meticulous monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA