Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 33(12): 3675-3699, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34469582

RESUMO

Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Ascomicetos/fisiologia , Proteínas Fúngicas/genética , Doenças das Plantas/genética , Ubiquitina-Proteína Ligases/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/genética , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ubiquitina-Proteína Ligases/metabolismo
2.
Plant Cell Rep ; 41(10): 2037-2088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35904590

RESUMO

KEY MESSAGE: Forty PaCRKs have been identified from sweet cherry and overexpression PaCRK1 in sweet cherry enhances its resistance to salt stress. Cysteine-rich receptor-like kinases (CRKs), a large subgroup of the receptor-like kinases, play an important role in plant development and stress response. However, knowledge about CRKs and its function against adverse environmental stresses in sweet cherry were lacking. In this study, 40 PaCRKs were identified from sweet cherry (Prunus avium) genome database. Phylogenetic analysis indicated that PaCRKs could be classified into six subgroups. Transcriptome analysis showed that the expression levels of most PaCRKs were changed under external environmental stresses. Functional study showed that PaCRK1 overexpression could enhance Arabidopsis and sweet cherry tolerance to salt stress. Moreover, biochemical analysis showed that PaCRK1 increased salt tolerance of sweet cherry by regulating the expression of antioxidation-related genes and their enzyme activities. This study provides a comprehensive understanding of PaCRKs in sweet cherry and elucidates the potential role of PaCRKs in response to various environmental stimuli.


Assuntos
Arabidopsis , Prunus avium , Arabidopsis/genética , Cisteína/metabolismo , Filogenia , Prunus avium/genética , Tolerância ao Sal/genética
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(8): 800-808, 2021 Aug 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-34565722

RESUMO

OBJECTIVES: The efficient acquisition and purification of fibroblasts as ideal seed cells are very important. For optimization of the isolation and culture of human foreskin fibroblasts (HFF), we compared the improved tissue culture method (ITCM) and the enzyme digestion method (EDM). METHODS: In ITCM, the skin tissue was digested with 0.1% Type II collagenase overnight at 4 ℃, the epidermis was separated from the dermis and digested again with 0.25% trypsin at room temperature for 15 min, and then the tissue block was attached to the culture dish. In EDM, the skin tissue was digested with 0.25% trypsin overnight at 4 ℃, the epidermis was separated from the dermis and digested with 0.1% Type II collagenase overnight at 4 ℃, the tissue block was filtered and squeezed together with the enzyme mixture, the filter was rinsed with medium containing fetal bovine serum, and the cell suspension was cultured. Both ITCM and EDM used 2 digestion enzymes, but the order, digestion time, and temperature of the 2 enzymes were different. The final inoculations of ITCM and EDM in the dishes for subsequent culture were tissue blocks and cell suspensions, respectively. In this study, HFF cells were isolated and cultured with ITCM and EDM, and the cell morphology was observed from Passage 0 to Passage 3 in the ITCM and EDM groups. The cell purity was identified by staining for vimentin, CD68, and Pan-keratin. The growth curves of Passage 3 were plotted to compare the proliferation ability of the 2 groups. Passage 3 HFF cells in the ITCM and EDM groups were irradiated with medium-wave ultraviolet (UVB) at an energy value of 120 mJ/cm2 to establish a light damage model. The experiments were grouped into an UVB group and a control group (Control) according to the presence or absence of UVB irradiation. Platelet-poor plasma (PPP) was extracted by secondary centrifugation, and the HFF cells of ITCM and EDM groups were cultured in groups using complete medium containing different concentrations (0, 2.5%, 5.0%, and 10.0%) of PPP, and the proliferation of damaged cells was detected by cell counting kit-8 after 24 h of PPP incubation. RESULTS: A large number of HFF could be observed in the ITCM group up to day 3, which was less affected by impurities; the observation of HFF morphology in the EDM group was affected by more impurities. By day 9, cells in both ITCM and EDM groups could be passaged; HFF isolated and cultured in vitro by the 2 methods showed long spindle-shaped, swirling growth. The positive rates of vimentin in the ITCM and EDM groups when HFF cells were cultured up to Passage 2 were significantly different [(97.36±0.76)% vs (99.4±0.56)%, P<0.01)]. The positive rates of CD68 were also significantly different [(70.8±0.46)% vs (78.37±0.75)%, P<0.01]. The expressions of pan-keratin in the ITCM group and the EDM group were positive and negative, respectively. There was no difference in vimentin and pan-keratin staining results between the ITCM group and the EDM group when HFF were cultured to Passage 3. The positive rates of CD68 between the ITCM group and the EDM group were significantly different [(74.73±1.37)% vs (85.27±2.63)%, P<0.001]. The proliferative capacity of HFF cells in Passage 3 was significantly higher in the EDM group than that in the ITCM group (P<0.05). After UVB (120 mJ/cm2) irradiation, HFFs procured by the 2 isolation methods showed damage. The damage repair test demonstrated that the 2.5% PPP+UVB irradiation group showed significantly higher repair competence than the other groups (all P<0.05). CONCLUSIONS: In contrast with HFFs isolated via ITCM, HFF cells isolated by EDM have a faster purification rate and a stronger proliferative capacity. Therapy with PPP can moderately repair UVB-induced damage to HFFs. The results provide a theoretical basis for clinical treatment studies in the future.


Assuntos
Fibroblastos , Prepúcio do Pênis , Células Cultivadas , Meios de Cultura , Células Epidérmicas , Humanos , Masculino , Vimentina
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(3): 297-306, 2019 Mar 28.
Artigo em Zh | MEDLINE | ID: mdl-30971523

RESUMO

OBJECTIVE: To establish a method for isolation, culture and identification of adipose-derived mesenchymal stem cells (ASCs) from the inbreed line miniature pig of Wuzhishan (ILMW).
 Methods: A total of 100 g adipose tissues were obtained from subcutaneous tissues of neck in six-month old healthy ILMW (3 samples, male). ASCs from ILMW (ILMW-ASCs) were isolated from adipose tissues through 0.1% collagenase digestion. The cells at the 3rd, 5th, 8th, 13th passages were collected. Cell morphology, size, phenotype, cell cycle, and apoptosis were monitored. Cell differentiation was induced and cell proliferation curve was drawn.
 Results: The ILMW-ASCs, fibroblast-like or whirlpool-like, began the adherence at 36 h and entered a logarithmic phase in the 5th day. Eighty percent of them were fused in the 7th day. The average diameter and volume of ILMW-ASCs were (17.00±0.54) µm and (2.58±0.24)×10-9 L, respectively. The expressions of CD29, CD44 and CD90 were positive, and there was no significant difference between the different passages (all P>0.05). The expressions of CD45, CD8a and HLA-DR were increased with the increase in passages after the 3th passage (all P<0.05). The adipogenic induction of ILMW-ASCs was observed by positive oil red O staining, and the osteogenic induction of ILMW-ASCs was determined by positive alizarin red staining. Apoptosis and senescence occurred in the 13 passage of ILMW-ASCs, and the proportion of S phase of cell cycle was lower than that in lower passages (all P<0.05). 
 Conclusion: ILMW-ASCs are one of the best choice for porcine ASCs, which might provide a source of candidate stem cells for therapy of large animal disease models and tissue or organ repairment.


Assuntos
Células-Tronco Mesenquimais , Tecido Adiposo , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Suínos , Porco Miniatura
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(12): 1260-1269, 2016 Dec 28.
Artigo em Zh | MEDLINE | ID: mdl-28070037

RESUMO

OBJECTIVE: To isolate bone marrow mesenchymal stem cells (BM-MSCs) and establish the model of chronic kidney disease (CKD) of Wuzhishan (WZS) mini-pig, and to study the repairment effect of BM-MSCs on CKD-induced renal fibrosis in vitro.
 Methods: Density gradient method was used to isolate and culture BM-MSCs. The cells were verified by morphology, phenotype, differentiation and so on. The left partial ureteral obstruction (LPUUO) was used to establish the CKD model, which was evaluated by B-ultrasound, single-photon emission computed tomography (SPECT), HE and Masson staining. The cells were divided into 3 groups, the tissue plus BM-MSCs group, the tissue group, and the BM-MSCs group, respectively. Seven days later, the supernatants were collected to observe the changes of hepatocyte growth factor (HGF) cumulative release. HE and Masson staining was used to observe the changes of renal tissue.
 Results: The isolated BM-MSCs possessed the features as follow: fibroblast-like adherent growth; positive in CD29 and CD90 expression while negative in CD45 expression; osteogenic induction and alizarin red staining were positive; alcian blue staining were positive after chondrogenic induction. Twelve weeks after the operation of LPUUO, B-ultrasound showed the thin renal cortical with pelvis effusion; SPETCT showed the left kidney delayed filling and renal impairment. The accumulation of HGF in the tissue plus BM-MSCs group was significantly higher than that in the tissue alone group at the 1st, 5th, 6th, 7th day, respectively (P<0.05). HE staining showed the different degree of renal lesions between the tissue plus BM-MSCs+CKD group and the tissue alone group, which was aggravated with the time going. Masson staining showed that the cumulative optical density of blue-stained collagen fibers in tissue plus BM-MSCs group was significantly lower than that in the tissue group at the 5th to 7th day (P<0.05).
 Conclusion: BM-MSCs from WZS mini-pig can inhibit or delay the progress of CKD-induced renal fibrosis through autocrine HGF in vitro.


Assuntos
Fibrose/prevenção & controle , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Comunicação Autócrina/fisiologia , Células da Medula Óssea , Células Cultivadas , Fibrose/fisiopatologia , Fator de Crescimento de Hepatócito/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Suínos , Porco Miniatura , Obstrução Ureteral/complicações
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 40(3): 261-8, 2015 Mar.
Artigo em Zh | MEDLINE | ID: mdl-25832529

RESUMO

OBJECTIVE: To establish a method to isolate, culture and identify bone marrow-derived mesenchymal stem cells (BM-MSCs) from inbreed line miniature pig of Wuzhishan (ILMW) in vitro, to compare the biological characteristics of BM-MSCs derived from different pigs, and to supply BM-MSCs for investigating the repair mechanisms of renal injury in ILMW aft er unilateral ureteral obstruction. METHODS: Four or 10-months old ILMW (n=4 per group) were selected and 5 mL of bone marrow fluid was extracted at 1 cm position from iliac wing edge. Mononuclear cells were isolated by density gradient method, then were cultured in the complete medium containing 3 different kinds of fetal bovine serum (FBS) (10% FBS, 12% FBS or 15% FBS). The cells of Passage 1, Passage 3, Passage 5 or Passage 11 were collected to examine biological characteristics including morphology, phenotype, differentiation ability, growth curve and cell cycle. RESULTS: The BM-MSCs were attached to the culture dishes, which were fibroblast-like or whirlpoollike. Primary cultured cells began the adherence at 18 h and entered a logarithmic phase in the 6th day. Eighty percent of them were fused in the 9th day. There were no obvious anomalies in the subcultured cells. The expressions in cell surface antigens of CD29, CD44 and CD90 were positive, while the expressions of CD34 and CD45 were negative. There was no statistically significant difference between cells from different generations (all P>0.05). Under condition of osteogenic induction, alizarin red staining was positive at the 18th day, and alcian blue staining was positive at the 21th day. Cell cycle examination showed that the rate of G0/G1 was about 81.45%. CONCLUSION: BM-MSCs of ILMW has advantages of earlier adherent time, more active proliferation, shorter cell subculture cycle, and stable biological characteristics after subculture, which is one of the best kinds of BM-MSCs coming from swine in mainland of China.


Assuntos
Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Divisão Celular , Separação Celular , Células Cultivadas , China , Suínos
7.
Heliyon ; 10(1): e23505, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187284

RESUMO

Background: Epithelial cell adhesion molecule (EpCAM), a well-established marker for circulating tumor cells, plays a crucial role in the complex process of cancer metastasis. The primary objective of this investigation is to study EpCAM expression in pan-cancer and elucidate its significance in the context of kidney renal clear cell carcinoma (KIRC). Methods: Data obtained from the public database was harnessed for the comprehensive assessment of the EpCAM expression levels and prognostic and clinicopathological correlations in thirty-three types of cancer. EpCAM was validated in our own KIRC sequencing and immunohistochemical cohorts. Subsequently, an in-depth exploration was conducted to scrutinize the interrelationship between EpCAM and various facets, including immune cells, immune checkpoints, and chemotherapy drugs. We employed Cox regression analysis to identify prognostic immunomodulators associated with EpCAM, which were subsequently utilized in the development of a prognostic model. The model was validated in our own clinical cohort and public datasets, and compared with 137 published models. The role of EpCAM in KIRC was explored by biological function experiments in vitro. Results: While EpCAM exhibited pronounced overexpression across a wide spectrum of cancer types, a notable reduction was observed in KIRC tissues. As grade increased, EpCAM expression decreased. EpCAM expression decreased in patients without metastasis. EpCAM mRNA and protein levels were used as independent, favorable prognostic factors in patients with KIRC in our own cohort. The expression of EpCAM exhibited strong associations with immune-related pathways, demonstrating an inverse correlation with the majority of immune cell types. Immune checkpoint inhibitors exert better therapeutic effects on patients with low EpCAM expression. In addition, EpCAM can be used as a drug resistance indicator and guide the clinical medication of patients with KIRC. A robust model, which had good predictive accuracy and applicability, showed significant superiority over other models. Importantly, EpCAM played the dual roles of promoting proliferation and resisting metastasis in KIRC. Conclusion: In the context of KIRC, EpCAM assumes a surprising dual role, where it not only facilitates cell proliferation but also exerts resistance against the metastatic process. EpCAM serves as a standalone prognostic marker for patients with KIRC, and related models can also effectively predict prognosis. These discoveries offer novel perspectives on the functional significance of EpCAM in the context of KIRC.

8.
Colloids Surf B Biointerfaces ; 241: 114064, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38954937

RESUMO

Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.

9.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831493

RESUMO

RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.

10.
Sci Rep ; 13(1): 14595, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670039

RESUMO

SVIL is a member of the villin/gelsolin superfamily and is responsible for encoding supervillin. It has been reported to be closely related to the occurrence and development of various tumors. However, the mechanism of SVIL in bladder cancer has not been reported yet. In this research, we evaluated the relationship between SVIL expression and bladder cancer in public dataset and examined the expression of SVIL in bladder cancer cell lines, tissue microarrays and patients in our cohort. Our work determined that the expression of SVIL in bladder cancer tissue was significantly lower than that in normal tissue. However, in bladder cancer tissues, the high expression of SVIL is significantly associated with poor prognosis. This kind of duality is very novel and has great research value. The expression level of SVIL can well predict the survival time of bladder cancer patients, and is an independent risk factor of bladder cancer patients. The expression of SVIL is also closely related to the immune tumor microenvironment of bladder cancer. Our research provides a basis for personalized therapeutic targets for bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular , Gelsolina , Fatores de Risco , Microambiente Tumoral , Proteínas de Membrana , Proteínas dos Microfilamentos
11.
Front Immunol ; 14: 1192428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600786

RESUMO

Background: Immunotherapy resistance has become a difficult point in treating kidney renal clear cell carcinoma (KIRC) patients, mainly because of immune evasion. Currently, there is no effective signature to predict immunotherapy. Therefore, we use machine learning algorithms to construct a signature based on cytotoxic T lymphocyte evasion genes (CTLEGs) to predict the immunotherapy responses of patients, so as to screen patients effective for immunotherapy. Methods: In public data sets and our in-house cohort, we used 10 machine learning algorithms to screen the optimal model with 89 combinations under the cross-validation framework, and 101 published signatures were collected. The relationship between the CTLEG signature (CTLEGS) and clinical variables was analyzed. We analyzed the role of CTLES in other types of cancer by pan-cancer analysis. The immune cell infiltration and biological characteristics were evaluated. Moreover, the response to immunotherapy and drug sensitivity of different risk groups were investigated. The key gene closely related to the signature was identified by WGCNA. We also conducted cell functional experiments and clinical tissue validation of key gene. Results: In public data sets and our in-house cohort, the CTLEGS shows good prediction performance. The CTLEGS can be regard as an independent risk factor for KIRC. Compared with 101 published models, our signature shows considerable superiority. The high-risk group has abundant infiltration of immunosuppressive cells and high expression of T cell depletion markers, which are characterized by immunosuppressive phenotype, minimal benefit from immunotherapy, and resistance to sunitinib and sorafenib. The CTLEGS was also strongly correlated with immunity in pan-cancer. Immunohistochemistry verified that T cell depletion marker LAG3 is highly expressed in high-risk groups in the clinical in-house cohort. The key CTLEG STAT2 can promote the proliferation, migration and invasion of KIRC cell. Conclusions: CTLEGS can accurately predict the prognosis of patients and their response to immunotherapy. It can provide guidance for the precise treatment of KIRC and help clinicians identify patients who may benefit from immunotherapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Linfócitos T Citotóxicos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Prognóstico , Imunoterapia , Complexo CD3 , Aprendizado de Máquina , Neoplasias Renais/genética , Neoplasias Renais/terapia , Rim
12.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173953

RESUMO

Non-muscle-invasive bladder cancer (NMIBC) is a common tumor of the urinary system. Given its high rates of recurrence, progression, and drug resistance, NMIBC seriously affects the quality of life and limits the survival time of patients. Pirarubicin (THP) is a bladder infusion chemotherapy drug recommended by the guidelines for NMIBC. Although the widespread use of THP reduces the recurrence rate of NMIBC, 10-50% of patients still suffer from tumor recurrence, which is closely related to tumor resistance to chemotherapy drugs. This study was performed to screen the critical genes causing THP resistance in bladder cancer cell lines by using the CRISPR/dCas9-SAM system. Thus, AKR1C1 was screened. Results showed that the high expression of AKR1C1 could enhance the drug resistance of bladder cancer to THP both in vivo and in vitro. This gene could reduce the levels of 4-hydroxynonenal and reactive oxygen species (ROS) and resist THP-induced apoptosis. However, AKR1C1 did not affect the proliferation, invasion, or migration of the bladder cancer cells. Aspirin, which is an AKR1C1 inhibitor, could help reduce the drug resistance caused by AKR1C1. After receiving THP treatment, the bladder cancer cell lines could upregulate the expression of the AKR1C1 gene through the ROS/KEAP1/NRF2 pathway, leading to resistance to THP treatment. Using tempol, which is an inhibitor of ROS, could prevent the upregulation of AKR1C1 expression.

13.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497458

RESUMO

Bladder cancer remains one of the most common malignant tumors that threatens human health worldwide. It imposes a heavy burden on patients and society due to the high medical costs associated with its easy metastasis and recurrence. Although several treatment options for bladder cancer are available, their clinical efficacy remains unsatisfactory. Therefore, actively exploring new drugs and their mechanisms of action for the clinical treatment of bladder cancer is very important. Scabertopin is one of the major sesquiterpene lactones found in Elephantopus scaber L. Sesquiterpene lactones are thought to have fairly strong anti-cancer efficacy. However, the anticancer effect of sesquiterpenoid scabertopin on bladder cancer and its mechanism are still unclear. The aim of this study is to evaluate the antitumor activity of scabertopin in bladder cancer and its potential molecular mechanism in vitro. Our results suggest that scabertopin can induce RIP1/RIP3-dependent necroptosis in bladder cancer cells by promoting the production of mitochondrial reactive oxygen species (ROS), inhibit the expression of MMP-9 by inhibiting the FAK/PI3K/Akt signaling pathway, and ultimately inhibit the migration and invasion ability of bladder cancer cells. At the same time, we also demonstrated that the half-inhibition concentration (IC50) of scabertopin on various bladder cancer cell lines (J82, T24, RT4 and 5637) is much lower than that on human ureteral epithelial immortalized cells (SV-HUC-1). The above observations indicate that scabertopin is a potential therapeutic agent for bladder cancer that acts by inducing necroptosis and inhibiting metastasis.

14.
Front Immunol ; 13: 1048204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505496

RESUMO

Backgrounds: Polyamine metabolism (PM) is closely related to the tumor microenvironment (TME) and is involved in antitumor immunity. Clear cell renal cell carcinoma (ccRCC) not only has high immunogenicity but also has significant metabolic changes. However, the role of PM in the immune microenvironment of ccRCC remains unclear. This study aimed to reveal the prognostic value of PM-related genes (PMRGs) expression in ccRCC and their correlation with the TME. Methods: The expression levels PMRGs in different cells were characterized with single-cell sequencing analysis. The PMRG expression pattern of 777 ccRCC patients was evaluated based on PMRGs. Unsupervised clustering analysis was used in identifying PMRG expression subtypes, and Lasso regression analysis was used in developing polyamine gene expression score (PGES), which was validated in external and internal data sets. The predictive value of PGES for immunotherapy was validated in the IMvigor210 cohort. Multiple algorithms were used in analyzing the correlation between PGES and immune cells. The sensitivity of PGES to chemotherapeutic drugs was analyzed with the "pRRophetic" package. We validated the genes that develop PGES in tissue samples. Finally, weighted gene co-expression network analysis was used in identifying the key PMRGs closely related to ccRCC, and cell function experiments were carried out. Results: PMRGs were abundantly expressed on tumor cells, and PMRG expression was active in CD8+ T cells and fibroblasts. We identified three PMRG expression subtypes. Cancer and immune related pathways were active in PMRG expression cluster A, which had better prognosis. PGES exhibited excellent predictive value. The high-PGES group was characterized by high immune cell infiltration, high expression of T cell depletion markers, high tumor mutation burden and tumor immune dysfunction and exclusion, was insensitive to immunotherapy but sensitive to sunitinib, temsirolimus, and rapamycin, and had poor prognosis. Spermidine synthetase (SRM) has been identified as a key gene and is highly expressed in ccRCC at RNA and protein levels. SRM knockdown can inhibit ccRCC cell proliferation, migration, and invasion. Conclusions: We revealed the biological characteristics of PMRG expression subtypes and developed PGES to accurately predict the prognosis of patients and response to immunotherapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Poliaminas , Linfócitos T CD8-Positivos , Neoplasias Renais/genética , Neoplasias Renais/terapia , Expressão Gênica , Microambiente Tumoral/genética
15.
Front Pharmacol ; 13: 900006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147333

RESUMO

Background: RNA methylation modification plays an important role in immune regulation. m7G RNA methylation is an emerging research hotspot in the RNA methylation field. However, its role in the tumor immune microenvironment of kidney renal clear cell carcinoma (KIRC) is still unclear. Methods: We analyzed the expression profiles of 29 m7G regulators in KIRC, integrated multiple datasets to identify a novel m7G regulator-mediated molecular subtype, and developed the m7G score. We evaluated the immune tumor microenvironments in m7G clusters and analyzed the correlation of the m7G score with immune cells and drug sensitivity. We tested the predictive power of the m7G score for prognosis of patients with KIRC and verified the predictive accuracy of the m7G score by using the GSE40912 and E-MTAB-1980 datasets. The genes used to develop the m7G score were verified by qRT-PCR. Finally, we experimentally analyzed the effects of WDR4 knockdown on KIRC proliferation, migration, invasion, and drug sensitivity. Results: We identified three m7G clusters. The expression of m7G regulators was higher in cluster C than in other clusters. m7G cluster C was related to immune activation, low tumor purity, good prognosis, and low m7G score. Cluster B was related to drug metabolism, high tumor purity, poor survival, and high m7G score. Cluster A was related to purine metabolism. The m7G score can well-predict the prognosis of patients with KIRC, and its prediction accuracy based on the m7G score nomogram was very high. Patients with high m7G scores were more sensitive to rapamycin, gefitinib, sunitinib, and vinblastine than other patients. Knocking down WDR4 can inhibit the proliferation, migration, and invasion of 786-0 and Caki-1 cells and increase sensitivity to sorafenib and sunitinib. Conclusion: We proposed a novel molecular subtype related to m7G modification and revealed the immune cell infiltration characteristics of different subtypes. The developed m7G score can well-predict the prognosis of patients with KIRC, and our research provides a basis for personalized treatment of patients with KIRC.

16.
Front Pharmacol ; 13: 879317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668934

RESUMO

Ferroptosis is a novel type of regulated cell death, whose unique metabolic characteristics are commonly used to evaluate the conditions of various diseases especially in tumors. Accumulating evidence supports that ferroptosis can regulate tumor development, metastasis, and therapeutic responses. Considering to the important role of chemotherapy in tumor treatment, drug resistance has become the most serious challenge. Revealing the molecular mechanism of ferroptosis is expected to solve tumor drug resistance and find new therapies to treat cancers. In this review, we discuss the relationship between ferroptosis and tumor drug resistance, summarize the abnormal ferroptosis in tissues of different cancer types and current research progress and challenges in overcoming treatment resistance, and explore the concept of targeting ferroptosis to improve tumor treatment outcomes.

17.
Front Cell Dev Biol ; 9: 699804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869304

RESUMO

Background: Ferroptosis is closely related to the occurrence and development of cancer. An increasing number of studies have induced ferroptosis as a treatment strategy for cancer. However, the predictive value of ferroptosis-related lncRNAs in bladder cancer (BC) still need to be further elucidated. The purpose of this study was to construct a predictive signature based on ferroptosis-related long noncoding RNAs (lncRNAs) to predict the prognosis of BC patients. Methods: We downloaded RNA-seq data and the corresponding clinical and prognostic data from The Cancer Genome Atlas (TCGA) database and performed univariate and multivariate Cox regression analyses to obtain ferroptosis-related lncRNAs to construct a predictive signature. The Kaplan-Meier method was used to analyze the overall survival (OS) rate of the high-risk and low-risk groups. Gene set enrichment analysis (GSEA) was performed to explore the functional differences between the high- and low-risk groups. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the predictive signature and immune status. Finally, the correlation between the predictive signature and the treatment response of BC patients was analyzed. Results: We constructed a signature composed of nine ferroptosis-related lncRNAs (AL031775.1, AL162586.1, AC034236.2, LINC01004, OCIAD1-AS1, AL136084.3, AP003352.1, Z84484.1, AC022150.2). Compared with the low-risk group, the high-risk group had a worse prognosis. The ferroptosis-related lncRNA signature could independently predict the prognosis of patients with BC. Compared with clinicopathological variables, the ferroptosis-related lncRNA signature has a higher diagnostic efficiency, and the area under the receiver operating characteristic curve was 0.707. When patients were stratified according to different clinicopathological variables, the OS of patients in the high-risk group was shorter than that of those in the low-risk group. GSEA showed that tumor- and immune-related pathways were mainly enriched in the high-risk group. ssGSEA showed that the predictive signature was significantly related to the immune status of BC patients. High-risk patients were more sensitive to anti-PD-1/L1 immunotherapy and the conventional chemotherapy drugs sunitinib, paclitaxel, cisplatin, and docetaxel. Conclusion: The predictive signature can independently predict the prognosis of BC patients, provides a basis for the mechanism of ferroptosis-related lncRNAs in BC and provides clinical treatment guidance for patients with BC.

18.
Food Sci Anim Resour ; 41(1): 59-70, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33506217

RESUMO

A method for simultaneous detection of fipronil (F) and its metabolites fipronil desulfinyl (FD), fipronil sulfide (FS), fipronil sulfone (FSO) in chicken eggs was applied and validated. It includes single-step, cheap, effective, rugged, safe-based method (SinChERS) for sample preparation and ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) for chemical analysis. Results suggested that formic acid enhanced the recovery of 4 target residues and 1% supplementation to acetonitrile gained higher recoveries than that of 5%. SinChERS integrated extraction and clean-up steps into one, with shorter time (1.5 h) to operate and higher recoveries (97%-100%) than HLB, Envi-Carb-NH2 and quik-easy-cheap-effective-rugged-safe method (QuEChERS), and it consumed the smallest volume of extracting solvent (10 mL) as QuEChERS. Quantitative analyses using external standard method suggested the linear ranges of 4 target compounds were 1-20 µg/L with R2>0.9947. The limit of detection (S/N>3) and quantification (S/N>10) were 0.3 µg/kg and 1 µg/kg. Recoveries ranged from 89.0% to 104.4%, and the relative standard deviations (n=6) at 1, 10, and 20 µg/kg were lower than 6.03%. Thirty batches of domestic eggs (500 g each) were detected by the established SinChERS-based UHPLC-MS/MS and no target residues were detected in all samples. The method developed in this study is a rapid, sensitive, accurate and economic way for multi-residue analysis of fipronil and its metabolites in eggs.

19.
Pathol Oncol Res ; 27: 598460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257551

RESUMO

Background: Ras-related C3 botulinum toxin substrate 3 (Rac3) is overexpressed in malignancies and promotes tumor progression. However, the correlations between Rac3 expression and the clinicopathological characteristics and prognoses of patients with bladder cancer (BC) remain unclear. Methods: Data from The Cancer Genome Atlas (TCGA) were used to analyze Rac3 expression in BC and normal bladder tissues and validated using the Oncomine database, quantitative real-time PCR (qRT-PCR) and western blot. The Kaplan-Meier method was used to analyze the relationship between Rac3 expression and the prognosis of patients with BC. Cox univariate and multivariate analyses of BC patients overall survival (OS) were performed. Signaling pathways that potentially mediate Rac3 activity in BC were then analyzed by gene set enrichment analysis (GSEA). Results: The Rac3 expression in BC tissues was significantly higher than that in normal bladder tissues. Rac3 expression was significantly correlated with grade and stage. Overexpression of Rac3 was associated with a poor prognosis. GSEA showed that the cell cycle, DNA replication, p53 signaling pathway and mismatch repair were differentially enriched in the high Rac3 expression phenotype. The qRT-PCR and western blot results confirmed that the Rac3 expression in BC tissues was higher than that in normal bladder tissues. Conclusion: Rac3 is highly expressed in BC, which is related to the advanced clinicopathological variables and adverse prognosis of patients with BC. These results provide a new therapeutic target for BC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Neoplasias da Bexiga Urinária/patologia , Proteínas rac de Ligação ao GTP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proteínas rac de Ligação ao GTP/genética
20.
Front Cell Dev Biol ; 9: 789004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869390

RESUMO

Urinary malignancies refer to a series of malignant tumors that occur in the urinary system and mainly include kidney, bladder, and prostate cancers. Although local or systemic radiotherapy and chemotherapy, immunotherapy, castration therapy and other methods have been applied to treat these diseases, their high recurrence and metastasis rate remain problems for patients. With in-depth research on the pathogenesis of urinary malignant tumors, this work suggests that regulatory cell death (RCD) plays an important role in their occurrence and development. These RCD pathways are stimulated by various internal and external environmental factors and can induce cell death or permit cell survival under the control of various signal molecules, thereby affecting tumor progression or therapeutic efficacy. Among the previously reported RCD methods, necroptosis, pyroptosis, ferroptosis, and neutrophil extracellular traps (NETs) have attracted research attention. These modes transmit death signals through signal molecules, such as cysteine-aspartic proteases (caspase) family and tumor necrosis factor-α (TNF-α) that have a wide and profound influence on tumor proliferation or death and even change the sensitivity of tumor cells to therapy. This review discussed the effects of necroptosis, pyroptosis, ferroptosis, and NETs on kidney, bladder and prostate cancer and summarized the latest research and achievements in these fields. Future directions and possibility of improving the denouement of urinary system tumors treatment by targeting RCD therapy were also explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA