Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38965668

RESUMO

Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.

2.
J Sci Food Agric ; 104(4): 2142-2155, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926484

RESUMO

BACKGROUND: Kiwifruit pomace, which contains abundant phenolic compounds, is typically discarded during the juicing process, leading to wastage of valuable resources. To address this issue, various indicators (including total acidity, sugar/acid ratio, vitamin C, total polyphenols, polyphenol monomers, and soluble solids content) of 15 kiwifruit cultivars were evaluated and juiced. Then, a polyphenol-concentrated solution from kiwifruit pomace was backfilled into kiwi juice to prepare whole nutritious compound kiwi juice, and its anti-hyperlipidemic activity on obese model mice was then investigated. RESULTS: Through grey relational analysis and the technique for order preference by similarity to an ideal solution (TOPSIS), Kuimi and Huayou were identified as the predominant varieties for juicing, with weighted relevance scores of 0.695 and 0.871 respectively and TOPSIS scores of 0.6509 and 0.8220 respectively. The polyphenol content of Cuixiang pomace was 43.97 mg g-1 , making it the most suitable choice for polyphenol extraction. By backfilling a polyphenol-concentrated solution derived from Cuixiang pomace into compound kiwi juice of Huayou and Kuimi, the whole nutritious compound kiwi juice with polyphenols was produced and exhibited superior bioactivities, including enhanced hepatic oxidative stress defense, and alleviated serum lipid abnormalities. Furthermore, whole nutritious compound kiwi juice with polyphenols ameliorated host intestinal microbiota dysbiosis by increasing the relative abundance of the phyla Bacteroidota and Verrucomicrobiota. CONCLUSION: A hypolipidemic dietary supplement based on kiwifruit pomace polyphenols has been successfully developed, providing an effective solution for hyperlipidemia intervention. © 2023 Society of Chemical Industry.


Assuntos
Actinidia , Hiperlipidemias , Animais , Camundongos , Polifenóis/química , Hiperlipidemias/tratamento farmacológico , Frutas/química , Extratos Vegetais/química , Suplementos Nutricionais/análise , Actinidia/química
3.
J Sci Food Agric ; 104(4): 2502-2517, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37985238

RESUMO

BACKGROUND: Auricularia auricula is rich in bioactive components, and microbial fermentation can further dramatically increase its content and bioavailability. However, there are few studies on the relationship between fermented A. auricula pulp (FAAP) and gut microbiota. In this study, standard strains Lactobacillus plantarum 21801 and 21805 purchased from the China Center of Industrial Culture Collection were used to ferment A. auricula pulp at a ratio of 2:1, with an inoculum of 5%, a fermentation temperature of 31 °C, and a fermentation time of 22 h. The nutritional properties, aroma, and color of FAAP and their effects on the body characteristics of mice and the structure and abundance of gut microbiota are discussed. RESULTS: The results showed that, compared with A. auricula pulp, FAAP significantly increased the nutritional properties while maintaining favorable sensory quality and flavor profiles. Among them, the content of total polyphenols and total flavonoids reached 22.04 µg mL-1 and 20.56 µg mL-1 respectively, and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid free-radical scavenging rate increased to 73.21%. The consumption of FAAP had no negative effects on weight or liver and kidney function in mice and dramatically enhanced the antioxidant capacity in the liver and serum. The production of short-chain fatty acids in the gut was promoted, the relative abundance of beneficial bacteria (Lactobacillus, Bifidobacterium, norank_f__Muribaculaceae and unclassified_f__Lachnospiraceae) increased, and the growth of some pathogenic bacteria (Helicobacter, Mucispirillum, and Alloprevotella) was inhibited. CONCLUSION: These findings demonstrate that FAAP is rich in nutrients and has unique functional properties that promote host health and regulate the gut microbiota. © 2023 Society of Chemical Industry.


Assuntos
Auricularia , Microbioma Gastrointestinal , Lactobacillus , Lactobacillus/metabolismo , Antioxidantes/metabolismo , Polifenóis/farmacologia , Bactérias , Fermentação
4.
J Food Sci Technol ; 60(7): 2063-2077, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37206421

RESUMO

Yeast and lactic acid bacteria are widely used in fermented foods and the nutrients and metabolites produced by fermentation have cholesterol degrading effects. This study utilized Xinjiang Aksu apples as the material to optimize the sequential fermentation process of different strains and construct a fermentation kinetic model to develop a functional fermentation product with low-sugar, probiotics-rich and lipid-lowering properties. The sequential fermentation of dealcoholized apple juice with Saccharomyces cerevisiae and Lactobacillus plantarum was optimized by response surface design, based on which a sequential fermentation kinetic model was constructed. The changes of short-chain fatty acids, cholesterol elimination rate and hydrophobic properties during the fermentation process were studied. The results showed that the kinetic model established under the optimal conditions could effectively predict the dynamic changes of the basic indexes during the fermentation process. After fermentation, the viable number of L. plantarum was 4.96 × 108 CFU/mL, short-chain fatty acids increased, the cholesterol elimination rate reached 45.06%, and the hydrophobicity was 51.37%, which had favorable lipid-lowering properties and hydrophobic effect. This research will provide a theoretical basis and technical support for the monitoring of microbial dynamics and functionalization development of sequentially fermented apple juice with different strains. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05741-z.

5.
Crit Rev Food Sci Nutr ; 62(14): 3951-3968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33427486

RESUMO

Foodborne pathogens are the main cause of human foodborne diseases and pose a serious threat to food safety. The control of them has always been a significant issue in food industry. With good biocompatibility and stability, nanomaterials display excellent bactericidal properties against many kinds of bacteria. In this review, the generation and application of nanostructures as antibacterial in the control of foodborne pathogens was summarized. The antibacterial effects of photocatalytic and contact bacteriostatic nanomaterials agents were mainly introduced. The influence factors and mechanisms of nanomaterials on the inactivation of foodborne pathogens were displayed. The photocatalytic nanostructured bacteriostatic agents can produce reactive oxygen species (ROS) and lead to charge transfer, which result in damaging of cell wall and leakage of small molecules under light irradiation. In addition, metals and metal oxide nanoparticles can kill bacterial cells by releasing metal ions, forming ROS and electrostatic interaction with cell membrane. Besides, the synergistic action of nanoparticles with natural antibacterial agents can improve the stability of these agents and their bactericidal performance. These current researches provided a broader idea for the control of microorganisms in food.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoestruturas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Espécies Reativas de Oxigênio
6.
Molecules ; 27(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630626

RESUMO

Vermiculite is a natural mineral. In this study, vermiculite and acid-activated vermiculite was used as a solid acid catalyst for the hydrolysis of cellulose in water. The catalysts were characterized by XRD, FT-IR, and BET. The effects of time, temperature, mass ratio and water amount on the reaction were investigated in the batch reactor. The results showed that the highest total reducing sugars (TRS) yield of 40.1% could be obtained on the vermiculite activated by 35 (wt)% H2SO4 with the mass ratio of catalyst to cellulose of 0.18 and water to cellulose of 16 at 478 K for 3.5 h. The acid-activated vermiculite was a stable catalyst through calcination at 628 K and the yield of TRS decreased to 36.2% after three times reuse. The results showed that the crystal structure of vermiculite was destroyed and the surface -OH groups increased after the acid treatment. However, the synergistic effect of a strongly electrostatic polarization and Brönsted acid was responsible for the efficient conversion of cellulose. The mechanism of cellulose hydrolysis on the acid-activated vermiculite was suggested. This work provides a promising strategy to design an efficient solid catalyst for the cellulose hydrolysis, and expands the use of vermiculite in a new field.


Assuntos
Celulose , Água , Ácidos , Silicatos de Alumínio , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Água/química
7.
J Sci Food Agric ; 102(8): 3405-3415, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34825372

RESUMO

BACKGROUND: Few studies to date have evaluated the use of Lactobacillus and Bifidobacterium in edible fungus fermentation. To obtain a fermented Lentinus edodes liquid product with good taste and effects, a strain with good fermentation performance from nine strains tested was selected, and the physicochemical properties and antioxidant capacity of the resulting product were evaluated. RESULTS: Lactobacillus fermentum 21828 exhibited adhesion, tolerance to low pH and bile salts, and good fermentation performance. The number of viable bacteria was 1.05 × 108 CFU mL-1 , and the extraction rate of crude polysaccharide from L. edodes was 2.79% after fermentation. The effects of fermentation on the contents and composition of nutrients in L. edodes liquid were marked, with changes in total soluble protein, total soluble sugar, total acid, and total phenol levels. The 2,2-diphenyl-1-picrylhydrazyl radical-scavenging rate in the fermentation liquid was 93.01%, which was significantly higher than that in non-fermented liquid (80.33%). Furthermore, analysis of volatile and 5'-nucleotide contents showed that fermentation altered the flavor of the product, whereas sensory evaluation showed that the fermented product was preferred. CONCLUSION: Our study demonstrated that the fermented L. edodes liquid exhibited better nutritional and functional properties, as well as sensory characteristics, compared with unfermented liquid. © 2021 Society of Chemical Industry.


Assuntos
Limosilactobacillus fermentum , Cogumelos Shiitake , Antioxidantes/química , Fermentação , Lactobacillus/metabolismo , Limosilactobacillus fermentum/metabolismo , Cogumelos Shiitake/metabolismo
8.
Appl Microbiol Biotechnol ; 105(11): 4709-4718, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34014346

RESUMO

Shigella flexneri (Sh. flexneri), a common foodborne pathogen, has become one of the main threats to food safety and human health due to its high pathogenicity and persistent infection. The objective of this study was to explore the antimicrobial and anti-biofilm activities and the possible mechanism of thymoquinone (TQ) against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of TQ against Sh. flexneri were 0.4 and 0.5 mg/mL, respectively. TQ showed bactericidal activity against Sh. flexneri in culture medium and milk system. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations demonstrated that TQ could induce abnormal cell morphology and destroy cell membrane. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis suggested that TQ could inhibit protein synthesis in Sh. flexneri. Also, at sub-inhibitory concentrations (SICs), TQ exhibited an inhibitory effect on Sh. flexneri biofilm formation, which was confirmed by crystal violet quantitative analysis and SEM observation. Real-time quantitative PCR (RT-qPCR) analyses revealed that TQ downregulated the expression of genes involved in Sh. flexneri biofilm formation. Thus, TQ has potential as a natural antimicrobial and anti-biofilm agent to address the contamination and infection caused by Sh. flexneri. KEY POINTS: • Antimicrobial and anti-biofilm activity of TQ on Shigella flexneri were investigated. • TQ inhibited biofilm formation by Shigella flexneri. • TQ provided a new strategy for Shigella flexneri control.


Assuntos
Biofilmes , Shigella flexneri , Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Humanos
9.
Food Microbiol ; 99: 103803, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119096

RESUMO

Tibetan kefir grains (TKG) are multi-functional starter cultures used in foods and have been applied in various fermentation systems. This study aimed to investigate the microbial community composition of TKG, the detoxification abilities of TKG and their isolates towards common mycotoxins, and the potential for applying TKG and their associated microbial populations to avoid mycotoxin contamination in dairy products. Cultivation-independent high-throughput sequencing of bacterial and fungal rDNA genes indicated that Lactobacillus kefiranofaciens and Kazachstania turicensis were the most abundant bacterial and fungal taxa, respectively. In addition, 27 total isolates were obtained using cultivation methods. TKG removed more than 90% of the Ochratoxin A (OTA) after 24 h, while the isolate Kazachstania unisporus AC-2 exhibited the highest removal capacity (~46.1%). Further, the isolate exhibited good resistance to acid and bile salts environment. Analysis of the OTA detoxification mechanism revealed that both adsorption and degradation activities were exhibited by TKG, with adsorption playing a major detoxification role. Furthermore, the addition of OTA did not affect the microbial community structure of TKG. These results indicate that TKG-fermented products can naturally remove mycotoxin contamination of milk and could potentially be practically applied as probiotics in fermentation products.


Assuntos
Kefir/microbiologia , Microbiota , Ocratoxinas/metabolismo , Animais , Biotransformação , Bovinos , Fermentação , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Leite/microbiologia , Ocratoxinas/análise , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Saccharomycetales/metabolismo , Tibet
10.
Compr Rev Food Sci Food Saf ; 19(6): 3802-3824, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337037

RESUMO

The high efficiency and accurate detection of foodborne pathogens and spoilage microorganisms in food are a task of great social, economic, and public health importance. However, the contamination levels of target bacteria in food samples are very low. Owing to the background interference of food ingredients and negative impact of nontarget flora, the establishment of efficient pretreatment techniques is very crucial for the detection of food microorganisms. With the significant advantages of high specificity and great separation efficiency, immunomagnetic separation (IMS) assay based on immunomagnetic particles (IMPs) has been considered as a powerful system for the separation and enrichment of target bacteria. This paper mainly focuses on the development of IMS as well as their application in food microorganisms detection. First, the basic principle of IMS in the concentration of food bacteria is presented. Second, the effect of different factors, including the sizes of magnetic particles (MPs), immobilization of antibody and operation parameters (the molar ratio of antibody to MPs, the amount of IMPs, incubation time, and bacteria concentration) on the immunocapture efficiency of IMPs are discussed. The performance of IMPs in different food samples is also evaluated. Finally, the combination of IMS and various kinds of detection methods (immunology-based methods, nucleic acid-based methods, fluorescence methods, and biosensors) to detect pathogenic and spoilage organisms is summarized. The challenges and future trends of IMS are also proposed. As an effective pretreatment technique, IMS can improve the detection sensitivity and shorten their testing time, thus exhibiting broad prospect in the field of food bacteria detection.


Assuntos
Bactérias/isolamento & purificação , Microbiologia de Alimentos/métodos , Separação Imunomagnética/métodos
11.
J Sci Food Agric ; 97(8): 2498-2507, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27701746

RESUMO

BACKGROUND: The separation of polyphenols from kiwifruit juice is essential for enhancing sensory properties and prevent the browning reaction in juice during processing and storage. RESULTS: The present study investigated the dynamic adsorption and desorption of polyphenols in kiwifruit juice using AB-8 resin. The model obtained could be successfully applied to predict the experimental results of dynamic adsorption capacity (DAC) and dynamic desorption quantity (DDQ). The results showed that dynamic adsorption of polyphenols could be optimised in a juice concentration of 19 °Brix, with a feed flow-rate of 1.3 mL min-1 and a feed volume of 7 bed volume (BV). The optimum conditions for dynamic desorption of polyphenols from the AB-8 resin were an ethanol concentration of 43% (v/v), an elute flow-rate of 2.2 mL min-1 and an elute volume of 3 BV. The optimized DAC value was 3.16 g of polyphenols kg-1 resin, whereas that for DDQ was 917.5 g kg-1 , with both values being consistent with the predicted values generated by the regression models. The major polyphenols in the dynamic desorption solution consisted of seven compositions. CONCLUSION: The present study could be scaled-up using a continuous column system for industrial application, thus contributing to the improved flavor and color of kiwifruit juice. © 2016 Society of Chemical Industry.


Assuntos
Actinidia/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Frutas/química , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Resinas Sintéticas/química , Adsorção , Manipulação de Alimentos/instrumentação , Extratos Vegetais/química , Polifenóis/química
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(1): 229-33, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25993854

RESUMO

The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.


Assuntos
Bebidas Alcoólicas/análise , Fermentação , Minerais/análise , Espectrometria de Massas , Espectrofotometria Atômica
13.
J Adv Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471648

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with an increasing incidence worldwide. Single drug therapy may have toxic side effects and disrupt gut microbiota balance. Polyphenols are widely used in disease intervention due to their distinctive nutritional properties and medicinal value, which a potential gut microbiota modulator. However, there is a lack of comprehensive review to explore the efficacy and mechanism of combined therapy with drugs and polyphenols for NAFLD. AIM OF REVIEW: Based on this, this review firstly discusses the link between NAFLD and gut microbiota, and outlines the effects of polyphenols and drugs on gut microbiota. Secondly, it examined recent advances in the treatment and intervention of NAFLD with drugs and polyphenols and the therapeutic effect of the combination of the two. Finally, we highlight the underlying mechanisms of polyphenol combined drug therapy in NAFLD. This is mainly in terms of signaling pathways (NF-κB, AMPK, Nrf2, JAK/STAT, PPAR, SREBP-1c, PI3K/Akt and TLR) and gut microbiota. Furthermore, some emerging mechanisms such as microRNA potential biomarker therapies may provide therapeutic avenues for NAFLD. KEY SCIENTIFIC CONCEPTS OF REVIEW: Drawing inspiration from combination drug strategies, the use of active substances in combination with drugs for NAFLD intervention holds transformative and prospective potential, both improve NAFLD and restore gut microbiota balance while reducing the required drug dosage. This review systematically discusses the bidirectional interactions between gut microbiota and NAFLD, and summarizes the potential mechanisms of polyphenol synergistic drugs in the treatment of NAFLD by modulating signaling pathways and gut microbiota. Future researches should develop multi-omics technology to identify patients who benefit from polyphenols combination drugs and devising individualized treatment plans to enhance its therapeutic effect.

14.
Int J Biol Macromol ; 258(Pt 1): 128826, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123040

RESUMO

Probiotics are of increasing interest for their potential health benefits, but their survival and adhesion in the harsh gastrointestinal environment remain a concern. This study explored a single-cell encapsulation technique to enhance probiotic survival and adhesion in the gastrointestinal tract. We encapsulated probiotics in curcumin-loaded liposomes, further coated them with polymers using layer-by-layer techniques. The coated probiotics were evaluated for survival in simulated gastrointestinal conditions, adhesion to colonic mucus, and scavenging of reactive oxygen species (ROS). The results showed that multi-layer encapsulation increased probiotic size at the nanoscale, enhancing their survival in simulated gastrointestinal conditions. Upon reaching the colon, the shedding of the coating coincided with probiotic proliferation. Additionally, the coated probiotics exhibited increased adhesion to colonic mucus. Moreover, the coating acted as a protective barrier for effectively scavenging reactive oxygen radicals, ensuring probiotic survival in inflammatory environments. This study combines the synergistic effects of probiotics and curcumin, underscoring the promise of single-cell encapsulation techniques in improving the efficacy of probiotics for addressing colitis-related diseases.


Assuntos
Quitosana , Curcumina , Probióticos , Lipossomos , Antioxidantes , Viabilidade Microbiana
15.
J Agric Food Chem ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838169

RESUMO

Inflammatory bowel disease (IBD) is a recurrent inflammatory condition affecting the gastrointestinal tract, and its clinical treatment remains suboptimal. Probiotics have shown effectiveness in alleviating dextran sulfate sodium salt (DSS)-induced colitis, exhibiting strain-specific anti-inflammatory properties. In this study, we compared the therapeutic effects of five strains of Bifidobacterium bifidum isolated from healthy adult feces on DSS-induced colitis in mice. Additionally, we investigated the underlying mechanisms by examining gut microbiota composition and microbial metabolome. Our findings highlighted the superior efficacy of B. bifidum M1-3 compared to other strains. It significantly improved colitis symptoms, mitigated gut barrier disruption, and reduced colonic inflammation in DSS-treated mice. Moreover, gut microbiota composition analysis revealed that B. bifidum M1-3 treatment increased the abundance and diversity of gut microbiota. Specifically, it significantly increased the abundance of Muribaculaceae, Lactobacillus, Bacteroides, and Enterorhabdus, while decreasing the abundance of Escherichia-Shigella. Furthermore, our nontargeted metabolomics analysis illustrated that B. bifidum M1-3 treatment had a regulatory effect on various metabolic pathways, including tyrosine metabolism, lysine degradation, and tryptophan metabolism. Importantly, we confirmed that the therapeutic efficiency of B. bifidum M1-3 was dependent on the gut microbiota. These results are conducive to the development of probiotic products for alleviating colitis.

16.
Food Res Int ; 179: 114036, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342549

RESUMO

Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.


Assuntos
Medicamentos de Ervas Chinesas , Polifenóis , Espectrometria de Massas em Tandem , Polifenóis/análise , Fermentação , Cromatografia Líquida , Fenóis/metabolismo , Digestão , Rutina/metabolismo , Colo/metabolismo
17.
Int J Biol Macromol ; 265(Pt 1): 130979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508552

RESUMO

Starch nanoparticles (SNPs) have the capability to adsorb polyphenol components from apple pomace efficiently, forming bound polyphenols (P-SNPs). These bound polyphenols may have potential bioactivities to affect human health positively. Therefore, in-depth in vivo observation of the antioxidant activity and evaluation of its gut microbiota regulatory function are essential. The results revealed that P-SNPs indicated significant scavenging abilities against DPPH, ABTS, and hydroxyl radicals. Furthermore, the nanomaterials exhibited non-toxic properties, devoid of hepatorenal and intestinal damage, while concurrently stimulating the production of short-chain fatty acids (SCFAs) within the gastrointestinal tract. Notably, P-SNPs significantly enhanced antioxidant capacity in serum, liver, and kidney tissues, fostering the proliferation of beneficial bacteria (Lactobacillus, Bacillus, norank_f__Muribaculaceae) while suppressing pathogenic bacterial growth (Helicobacter, Odoribacter). This study proposes a novel research concept for the scientific use of polyphenols in promoting gut health.


Assuntos
Microbioma Gastrointestinal , Nanoestruturas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Polifenóis/farmacologia , Polifenóis/análise , Amido/metabolismo , Ácidos Graxos Voláteis/metabolismo
18.
Foods ; 13(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38397537

RESUMO

Sea buckthorn (Hippophaë rhamnoides L.), as one of the Elaeagnaceae family, has the significant function of anti-tumor, anti-inflammation, anti-oxidation, and other physiological activities. High hydrostatic pressure (HHP) extraction has the advantages of being easy and efficient, while maintaining biological activity. In this study, sea buckthorn flavonoid (SBF) was extracted with HHP and purified sea buckthorn flavonoid (PSBF) was isolated by AB-8 macroporous resin column. HPLC analysis was used to quantified them. In addition, the effect of anti-allergy in RBL-2H3 cells by SBF, PSBF, and their flavonoid compounds was evaluated. The results demonstrate the conditions for obtaining the maximum flavonoid amount of SBF: 415 MPa for 10 min, 72% ethanol concentration, and a liquid to solid ratio of 40 mL/g, which increased the purity from 1.46% to 13.26%. Both SBF and PSBF included rutin, quercitrin, quercetin, isorhamnetin, and kaempferol. In addition, quercitrin, kaempferol, and SBF could regulate Th1/Th2 cytokine balance. Moreover, extracellular Ca2+ influx was reduced by quercitrin and PSBF. Furthermore, rutin, quercetin, iso-rhamnetin, and SBF could also inhibit P-p38 and P-JNK expression, thereby suppressing the phosphorylation of the MAPK signaling pathways. Overall, SBF is effective for relieving food allergy and might be a promising anti-allergic therapeutic agent.

19.
Int J Biol Macromol ; 269(Pt 1): 132063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705329

RESUMO

Probiotic therapy has emerged as a promising approach for the treatment of gastrointestinal diseases, offering advantages in terms of safety and convenience. However, oral probiotics encounter significant challenges, including exposure to a hostile gastric environment with low pH, bile salts, elevated levels of reactive oxygen species (ROS), and damage to the protective mucus layer. These factors reduce probiotic survival rates and limit their physiological activity. To address these challenges, we developed a layer-by-layer coated probiotics with curcumin-loaded liposome and polymer. Through DSS-induced colitis mice experiments, we demonstrated that the coated probiotics exhibited an improved survival rate in the gastrointestinal tract and enhanced adhesion to the intestinal mucosa. Furthermore, multi-layered coated probiotics exhibited remarkable efficacy in alleviating colitis by efficiently repairing the gut barrier, modulating gut microbial homeostasis, and reducing bacterial motility at sites of colonic inflammation. Our innovative approach holds promise for effectively treating gastrointestinal diseases.


Assuntos
Quitosana , Colite , Sulfato de Dextrana , Lipossomos , Probióticos , Animais , Probióticos/administração & dosagem , Probióticos/farmacologia , Colite/induzido quimicamente , Colite/terapia , Colite/tratamento farmacológico , Lipossomos/química , Camundongos , Quitosana/química , Quitosana/farmacologia , Curcumina/farmacologia , Curcumina/química , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos
20.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763727

RESUMO

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Assuntos
Antibacterianos , Antioxidantes , Catequina , Emulsões , Escherichia coli , Frutas , Mananas , alfa-Ciclodextrinas , alfa-Ciclodextrinas/química , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Mananas/química , Mananas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Frutas/química , Emulsões/química , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Conservação de Alimentos/métodos , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA