Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bull Environ Contam Toxicol ; 108(1): 107-113, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34160637

RESUMO

This study describes the optimization of the biodegradation of total aliphatic (tAHCs), total aromatic (tPAHs), and unresolved complex mixture (UCM) hydrocarbons from light crude oil in marine sediment. The response surface methodology (RSM), with a Box-Behnken design, was used to optimize the hydrocarbon fraction degradation, reported as degradation efficiency (E (%)), using four independent variables (inoculum, dispersant, light oil concentration, and carbon/nitrogen ratio), all at three levels. Analysis of variance (ANOVA) showed R2 values of 0.976, 0.974, and 0.975 for tAHCs, tPAHs, and UCM, respectively. All fractions exhibited a statistically significant effect (P < 0.05) in the second-order quadratic regression model for degradation. According to the models, the optimal degradation prediction was: 81.03% for tAHCs, 85.96% for tPAHs, and 92.86% for UCM. This work highlights the possibility of carrying out efficient biodegradation, of more than 80%, through an optimization process using different light oil concentrations, opening up possibilities of multiple response optimization.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Sedimentos Geológicos , Hidrocarbonetos , Poluição por Petróleo/análise
2.
Bull Environ Contam Toxicol ; 108(1): 93-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33954861

RESUMO

Degradation efficiency of a heavy crude oil by a marine microbial consortium was evaluated in this study, with and without the addition of a chemical dispersant (Nokomis 3-F4). 15.50% of total petroleum hydrocarbons (TPH) were removed after 15 days of incubation without dispersant, with a degradation rate of 2.39 ± 0.22 mg L-1 day-1. In contrast, the addition of Nokomis 3-F4 increased TPH degradation up to 30.81% with a degradation rate of 5.07 ± 0.37 mg L-1 day-1. 16S rRNA gene sequencing indicated a dominance of the consortium by Achromobacter and Alcanivorax. Nonetheless, significant increases in the relative abundance of Martelella and Ochrobactrum were observed with the addition of Nokomis 3-F4. These results will contribute to further environmental studies of the Gulf of Mexico, where Nokomis 3-F4 can be used as chemical dispersant.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Consórcios Microbianos , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água , Poluentes Químicos da Água/análise
3.
Microb Ecol ; 81(4): 908-921, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33196853

RESUMO

This study investigates the community composition, structure, and abundance of sulfate-reducing microorganisms (SRM) in surficial sediments of the Northwestern Gulf of Mexico (NWGoM) along a bathymetric gradient. For these purposes, Illumina sequencing and quantitative PCR (qPCR) of the dissimilatory sulfite reductase gene beta subunit (dsrB gene) were performed. Bioinformatic analyses indicated that SRM community was predominantly composed by members of Proteobacteria and Firmicutes across all the samples. However, Actinobacteria, Thermodesulfobacteria, and Chlorobi were also detected. Phylogenetic analysis indicated that unassigned dsrB sequences were related to Deltaproteobacteria and Nitrospirota superclusters, Euryarchaeota, and to environmental clusters. PCoA ordination revealed that samples clustered in three different groups. PERMANOVA indicated that water depth, temperature, redox, and nickel and cadmium content were the main environmental drivers for the SRM communities in the studied sites. Alpha diversity and abundance of SRM were lower for deeper sites, suggesting decreasing sulfate reduction activity with respect to water depth. This study contributes with the understanding of distribution and composition of dsrAB-containing microorganisms involved in sulfur transformations that may contribute to the resilience and stability of the benthic microbial communities facing metal and hydrocarbon pollution in the NWGoM, a region of recent development for oil and gas drilling.


Assuntos
Bactérias , Sulfatos , Bactérias/genética , Sedimentos Geológicos , Golfo do México , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
4.
J Toxicol Environ Health A ; 83(8): 313-329, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378477

RESUMO

Exposure to contaminants might directly affect organisms and alter their associated microbiota. The objective of the present study was to determine the impact of the petroleum-water-accommodated fraction (WAF) from a light crude oil (API gravity 35) on a benthic fish species native from the Gulf of Mexico (GoM). Ten adults of Achirus lineatus (Linnaeus, 1758) were exposed to a sublethal WAF/water solution of 50% v/v for 48 hr. Multiple endpoints were measured including tissue damage, presence of polycyclic aromatic hydrocarbons (PAHs) metabolites in bile and gut microbiota analyses. Atrophy and fatty degeneration were observed in livers. Nodules and inflammation were detected in spleen, and structural disintegration and atrophy in the kidney. In gills hyperplasia, aneurysm, and gills lamellar fusion were observed. PAHs metabolites concentrations in bile were significantly higher in exposed organisms. Gut microbiome taxonomic analysis showed significant shifts in bacterial structure and composition following WAF exposure. Data indicate that exposure to WAF produced toxic effects in adults of A. lineatus, as evidenced by histological alterations and dysbiosis, which might represent an impairment to long-term subsistence of exposed aquatic organisms.


Assuntos
Linguados/microbiologia , Microbiota/efeitos dos fármacos , Petróleo/análise , Petróleo/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bile/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
5.
Curr Microbiol ; 77(9): 2312-2321, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32524276

RESUMO

This study investigated the intestinal microbial community structure of Litopenaeus vannamei at six different stages during shrimp farming. Our goal was to elucidate the bacterial profile and the changes in the relative abundance of taxa during an atypical massive mortality event in Sonora, Mexico. High-throughput sequencing of the 16S rRNA gene and denaturing gradient gel electrophoresis showed that Vibrionaceae was persistent with high relative abundances in the intestine from cultivated shrimp during all the studied stages. The massive mortality observed at day 63 could be related to an overabundance of different Operational Taxonomic Units (OTUs) of Vibrio, Shewanella and Clostridium. Principal coordinate analysis (PCoA) showed variations in microbial structure at different culture times. These findings suggest that OTUs of different taxa contributed to the community switch from healthy to diseased individuals, questioning the hypothesis that single bacterial species is the cause of disease outbreaks. This study provided data to improve the understanding of disease outbreaks during shrimp farming.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , México , Penaeidae/genética , RNA Ribossômico 16S/genética
6.
Extremophiles ; 22(6): 903-916, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120599

RESUMO

Bacterial and archaeal community structure of five microbial communities, developing at different salinities in Baja California Sur, Mexico, were characterized by 16S rRNA sequencing. The response of the microbial community to artificial changes in salinity-sulfate concentrations and to addition of trimethylamine was also evaluated in microcosm experiments. Ordination analyses of the microbial community structure showed that microbial composition was distinctive for each hypersaline site. Members of bacteria were dominated by Bacteroidetes and Proteobacteria phyla, while Halobacteria of the Euryarchaeota phylum was the most represented class of archaea for all the environmental samples. At a higher phylogenetic resolution, methanogenic communities were dominated by members of the Methanosarcinales, Methanobacteriales and Methanococcales orders. Incubation experiments showed that putative hydrogenotrophic methanogens of the Methanomicrobiales increased in abundance only under lowest salinity and sulfate concentrations. Trimethylamine addition effectively increased the abundance of methylotrophic members from the Methanosarcinales, but also increased the relative abundance of the Thermoplasmata class, suggesting the potential capability of these microorganisms to use trimethylamine in hypersaline environments. These results contribute to the knowledge of microbial diversity in hypersaline environments from Baja California Sur, Mexico, and expand upon the available information for uncultured methanogenic archaea in these ecosystems.


Assuntos
Metano/biossíntese , Microbiota , Salinidade , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo
7.
Microb Ecol ; 75(4): 930-940, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29116347

RESUMO

Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H2S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.


Assuntos
Bactérias/metabolismo , Crescimento Quimioautotrófico , Metano/metabolismo , Microbiota/fisiologia , Salinidade , Sulfatos/metabolismo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Sulfeto de Hidrogênio/metabolismo , Metilaminas/metabolismo , México , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
8.
Microb Ecol ; 69(1): 106-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25108574

RESUMO

Methanogenesis in hypersaline and high-sulfate environments is typically dominated by methylotrophic methanogens because sulfate reduction is thermodynamically favored over hydrogenotrophic methanogenesis in these environments. We characterized the community composition of methanogenic archaea in both unmanipulated and incubated microbial mats from different hypersaline environments in Baja California Sur, Mexico. Clone libraries of methyl coenzyme-M reductase (mcrA) sequences and DGGE band patterns of 16S rRNA and mcrA sequences showed that the methanogen community in these microbial mats is dominated by methylotrophic methanogens of the genus Methanohalophilus. However, phylogenetic analyses of mcrA sequences from these mats also revealed two new lineages corresponding to putative hydrogenotrophic methanogens related with the strictly hydrogenotrophic order Methanomicrobiales. Stimulated methane production under decreased salinity and sulfate concentrations also suggested the presence of hydrogenotrophic methanogens in these samples. The relative abundance of mcrA gene and transcripts, estimated by SYBR green I qPCR assays, suggested the activity of different phylogenetic groups of methanogens, including the two novel clusters, in unmanipulated samples of hypersaline microbial mats. Using geochemical and molecular approaches, we show that substrate limitation and values of salinity and sulfate higher than 3 % and 25 mM (respectively) are potential environmental constraints for methanogenesis in these environments. Microcosm experiments with modifications of salinity and sulfate concentrations and TMA addition showed that upper salt and sulfate concentrations for occurrence of methylotrophic methanogenesis were 28 % and 263 mM, respectively. This study provides phylogenetic information about uncultivated and undescribed methanogenic archaea from hypersaline environments.


Assuntos
Archaea/genética , Filogenia , Archaea/classificação , DNA Arqueal/genética , Ecossistema , RNA Ribossômico 16S/genética , Salinidade
9.
PLoS One ; 19(4): e0299518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603769

RESUMO

Wastewater irrigation is a common practice for agricultural systems in arid and semiarid zones, which can help to overcome water scarcity and contribute with nutrient inputs. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are key in the transformation of NH4+-N in soil and can be affected by variations in soil pH, EC, N and C content, or accumulation of pollutants, derived from wastewater irrigation. The objective of this study was to determine the changes in the ammonia oxidizing communities in agricultural soils irrigated with wastewater for different periods of time (25, 50, and 100 years), and in rainfed soils (never irrigated). The amoA gene encoding for the catalytic subunit of the ammonia monooxygenase was used as molecular reporter; it was quantified by qPCR and sequenced by high throughput sequencing, and changes in the community composition were associated with the soil physicochemical characteristics. Soils irrigated with wastewater showed up to five times more the abundance of ammonia oxidizers (based on 16S rRNA gene relative abundance and amoA gene copies) than those under rainfed agriculture. While the amoA-AOA: amoA-AOB ratio decreased from 9.8 in rainfed soils to 1.6 in soils irrigated for 100 years, indicating a favoring environment for AOB rather than AOA. Further, the community structure of both AOA and AOB changed during wastewater irrigation compared to rainfed soils, mainly due to the abundance variation of certain phylotypes. Finally, the significant correlation between soil pH and the ammonia oxidizing community structure was confirmed, mainly for AOB; being the main environmental driver of the ammonia oxidizer community. Also, a calculated toxicity index based on metals concentrations showed a correlation with AOB communities, while the content of carbon and nitrogen was more associated with AOA communities. The results indicate that wastewater irrigation influence ammonia oxidizers communities, manly by the changes in the physicochemical environment.


Assuntos
Amônia , Solo , Solo/química , Amônia/química , Águas Residuárias , RNA Ribossômico 16S , Archaea/genética , Oxirredução , Microbiologia do Solo , Filogenia , Nitrificação
10.
Environ Microbiol Rep ; 16(3): e13264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692840

RESUMO

This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 µL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.


Assuntos
Bactérias , Hidrocarbonetos , RNA Ribossômico 16S , Água do Mar , Golfo do México , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Microbiota , Filogenia , Petróleo/metabolismo , Petróleo/microbiologia , Biodegradação Ambiental , Biodiversidade
11.
PLoS One ; 19(5): e0303480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820441

RESUMO

Due to the dramatic reduction of sea cucumber Isostichopus badionotus populations in the Yucatan Peninsula by overfishing and poaching, aquaculture has been encouraged as an alternative to commercial catching and restoring wild populations. However, the scarcity of broodstock, the emergence of a new disease in the auricularia larvae stage, and the development of skin ulceration syndrome (SUS) in the culture have limited aquaculture development. This study presents the changes in the intestine and skin microbiota observed in early and advanced stages of SUS disease in cultured juvenile I. badionotus obtained during an outbreak in experimental culture through 16S rRNA gene sequencing and histological evidence. Our results showed inflammation in the intestines of juveniles at both stages of SUS. However, more severe tissue damage and the presence of bacterial clusters were detected only in the advanced stages of SUS. Differences in the composition and structure of the intestinal and skin bacterial community from early and advanced stages of SUS were detected, with more evident changes in the intestinal microbial communities. These findings suggest that SUS was not induced by a single pathogenic bacterium. Nevertheless, a decrease in the abundance of Vibrio and an increase in Halarcobacter (syn. Arcobacter) was observed, suggesting that these two bacterial groups could be keystone genera involved in SUS disease.


Assuntos
Microbiota , Pepinos-do-Mar , Pele , Animais , Pele/microbiologia , Pele/patologia , Pepinos-do-Mar/microbiologia , Aquicultura , RNA Ribossômico 16S/genética , Úlcera Cutânea/microbiologia , Úlcera Cutânea/epidemiologia , Úlcera Cutânea/patologia , Surtos de Doenças , Microbioma Gastrointestinal
12.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838457

RESUMO

Belowground seagrass associated microbial communities regulate biogeochemical dynamics in the surrounding sediments and influence seagrass physiology and health. However, little is known about the impact of environmental stressors upon interactions between seagrasses and their prokaryotic community in coastal ecosystems. Submerged groundwater discharges (SGD) at Dzilam de Bravo, Yucatán, Mexico, causes lower temperatures and salinities with higher nutrient loads in seawater, resulting in Halodule wrightii monospecific stands. In this study, the rhizospheric archaeal and bacterial communities were characterized by 16S rRNA Illumina sequencing along with physicochemical determinations of water, porewater and sediment in a 400 m northwise transect from SGD occurring at 300 m away from coastline. Core bacterial community included Deltaproteobacteria, Bacteroidia and Planctomycetia, possibly involved in sulfur metabolism and organic matter degradation while highly versatile Bathyarchaeia was the most abundantly represented class within the archaeal core community. Beta diversity analyses revealed two significantly different clusters as result of the environmental conditions caused by SGD. Sites near to SGD presented sediments with higher redox potentials and sand contents as well as lower organic matter contents and porewater ammonium concentrations compared with the furthest sites. Functional profiling suggested that denitrification, aerobic chemoheterotrophy and environmental adaptation processes could be better represented in these sites, while sulfur metabolism and genetic information processing related profiles could be related to SGD uninfluenced sites. This study showed that the rhizospheric prokaryotic community structure of H. wrightii and their predicted functions are shaped by environmental stressors associated with the SGD. Moreover, insights into the archaeal community composition in seagrasses rhizosphere are presented.

13.
PeerJ ; 11: e14587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785710

RESUMO

Mangroves are unique coastal ecosystems, which have many important ecological functions, as they are a reservoir of many marine species well adapted to saline conditions and are fundamental as sites of carbon storage. Although the microbial contribution to nutrient cycling in these ecosystems has been well recognized, there is a lack of information regarding the microbial composition and structure of different ecological types of mangrove forests. In this study, we characterized the microbial community (Bacteria and Archaea) in sediments associated with five ecological types of mangrove forests in a coastal lagoon dominated by Avicennia germinans and Rhizophora mangle, through 16S rRNA-V4 gene sequencing. Overall, Proteobacteria (51%), Chloroflexi (12%), Gemmatimonadetes (5%) and Planctomycetes (6%) were the most abundant bacterial phyla, while Thaumarchaeota (30%), Bathyarchaeota (21%) and Nanoarchaeaeota (18%) were the dominant archaeal phyla. The microbial composition associated with basin mangroves dominated by Avicennia germinans was significantly different from the other ecological types, which becomes relevant for restoration strategies.


Assuntos
Avicennia , Microbiota , México , RNA Ribossômico 16S/genética , Áreas Alagadas , Avicennia/genética , Bactérias/genética , Archaea/genética , Microbiota/genética
14.
Microorganisms ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985385

RESUMO

Knowledge regarding the diversity of methanogenic archaeal communities in hypersaline environments is limited because of the lack of efficient cultivation efforts as well as their low abundance and metabolic activities. In this study, we explored the microbial communities in hypersaline microbial mats. Bioinformatic analyses showed significant differences among the archaeal community structures for each studied site. Taxonomic assignment based on 16S rRNA and methyl coenzyme-M reductase (mcrA) gene sequences, as well as metagenomic analysis, corroborated the presence of Methanosarcinales. Furthermore, this study also provided evidence for the presence of Methanobacteriales, Methanomicrobiales, Methanomassiliicoccales, Candidatus Methanofastidiosales, Methanocellales, Methanococcales and Methanopyrales, although some of these were found in extremely low relative abundances. Several mcrA environmental sequences were significantly different from those previously reported and did not match with any known methanogenic archaea, suggesting the presence of specific environmental clusters of methanogenic archaea in Guerrero Negro. Based on functional inference and the detection of specific genes in the metagenome, we hypothesised that all four methanogenic pathways were able to occur in these environments. This study allowed the detection of extremely low-abundance methanogenic archaea, which were highly diverse and with unknown physiology, evidencing the presence of all methanogenic metabolic pathways rather than the sheer existence of exclusively methylotrophic methanogenic archaea in hypersaline environments.

15.
Int Microbiol ; 15(1): 33-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22837150

RESUMO

Methanogens have been reported in complex microbial communities from hypersaline environments, but little is known about their phylogenetic diversity. In this work, methane concentrations in environmental gas samples were determined while methane production rates were measured in microcosm experiments with competitive and non-competitive substrates. In addition, the phylogenetic diversity of methanogens in microbial mats from two geographical locations was analyzed: the well studied Guerrero Negro hypersaline ecosystem, and a site not previously investigated, namely Laguna San Ignacio, Baja California Sur, Mexico. Methanogenesis in these microbial mats was suspected based on the detection of methane (in the range of 0.00086 to 3.204 %) in environmental gas samples. Microcosm experiments confirmed methane production by the mats and demonstrated that it was promoted only by non-competitive substrates (trimethylamine and methanol), suggesting that methylotrophy is the main characteristic process by which these hypersaline microbial mats produce methane. Phylogenetic analysis of amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from natural and manipulated samples revealed various methylotrophic methanogens belonging exclusively to the family Methanosarcinaceae. Moderately halophilic microorganisms of the genus Methanohalophilus were predominant (>60 % of mcrA sequences retrieved). Slightly halophilic and marine microorganisms of the genera Methanococcoides and Methanolobus, respectively, were also identified, but in lower abundances.


Assuntos
Ecossistema , Metano/biossíntese , Methanosarcinaceae/enzimologia , Methanosarcinaceae/genética , Metilaminas/metabolismo , Oxirredutases/genética , Salinidade , Sequência de Aminoácidos , Variação Genética , Methanosarcinaceae/classificação , Oxirredutases/química , Filogenia
16.
Sci Rep ; 12(1): 1110, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064185

RESUMO

The karst underground river ecosystem of Yucatan peninsula is composed of cave systems and sinkholes. The microbial diversity of water from this underground river has been studied, but, structure of the microbial community in its cave sediments remained largely unknown. Here we describe how the microbial community structure of these sediments changes due to different environmental conditions found in sediment zones along the caves of a coastal and an inland sinkhole. We found that dominant microbial groups varied according to the type of sinkhole (Coastal: Chloroflexi and Crenarchaeota; inland: Methylomirabilota and Acidobacteriota) and that the community structures differed both among sinkhole types, and within the sediment zones that were studied. These microorganisms are associated with different types of metabolism, and differed from a microbial community dominated by sulfate reducers at the coastal sinkhole, to one dominated by methylotrophs at the inland sinkhole, suggesting there are biogeochemical processes in the coastal and inland sinkholes that lead to changes in the microbial composition of the underground river ecosystem's sediments. Our results suggest sediments from unexplored sinkhole caves are unique environmental niches with distinct microbial assemblages that putatively play an important role in the biogeochemical cycles of these ecosystems.

17.
PeerJ ; 9: e11633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249499

RESUMO

BACKGROUND: Biological control using entomopathogenic nematodes (EPN) has demonstrated good potential to contribute to the integral control of mosquito larvae, which as adults are vectors of diseases such as Dengue fever, Zika and Chikungunya. However, until now there are no records of the presence of EPN or their killing capacity in Yucatán state, southern México. The objectives of the current study were: (1) to report the entomopathogenic nematodes present in Yucatán soils and (2) to determine the killing capacity of the most frequent and abundant EPN against Aedes aegypti mosquito larvae and the microbial community developed by Ae. Aegypti exposed to this EPN. METHODS: The nematodes were collected by the insect trap technique using the great wax moth Galleria mellonella. Internal transcribed spacer (ITS), 28S gene of ribosomal DNA and phylogenetic analyses were performed to identify the EPN. For the bioassay, four concentrations of the most frequent and abundant EPN were tested: 1,260:1 infective juveniles (IJs) per mosquito larvae, 2,520 IJs:1, 3,780 IJs:1 and 5,040 IJs:1. High-throughput sequencing of the 16S rRNA gene was used to identify bacterial amplicon sequences in the mosquito larvae infected with EPN. RESULTS: Six isolates of Heterorhabditis were recovered from 144 soil samples. Heterorhabditis indica (four isolates) was the most frequent and abundant EPN, followed by Heterorhabditis n. sp. (two isolates). Both nematodes are reported for the first time for Yucatán state, Mexico. The concentration of 2,520 IJs:1 produced 80% of mosquito larvae mortality in 48 h. Representative members of Photorhabdus genus were numerically dominant (74%) in mosquito larvae infected by H. indica. It is most likely that these bacteria produce secondary toxic metabolites that enhance the mortality of these mosquito larvae.

18.
PeerJ ; 9: e10695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604172

RESUMO

Reef corals in the Mexican Reef System have been severely affected by the emergence of a white syndrome that resembles both White Plague II and SCTLD descriptions. Meandroid scleractinian coral species are among the most severely affected. To gain insight into this affliction we conducted a broad study in the brain coral Pseudodiploria strigosa at a rear reef site in the NE Mexican Caribbean. We describe macro and microscopical signals of the disease, characterize the outbreak dynamics, the tissue histopathology, explore immunological responses in the individuals, and compare microbial assemblages associated with the surface mucus layer of healthy and unhealthy colonies. At the study site, the white syndrome outbreak on P. strigosa showed a high incidence rate in summer-fall and a low one in winter, as well as low survival expectation of diseased colonies at the end of the study. After 306 days of observation, out of 96 tracked colonies, eight remained apparently healthy and seven were diseased. No effective resistance to colony disease progression was observed once white syndrome signs developed. Tissue loss rate during the study varied among colonies (mean = 10.8 cm2, s.d. = 7.8 cm2) suggesting a complex relation between causal agents and colony resistance. The deterioration of tissues was evidenced from the basal to the surface body wall of polyps (up to 66% hypertrophy and liquefactive necrosis in unhealthy colonies), implying that microscopic alterations begin before macroscopic signals develop, suggesting this may be a systemic disease. We measured high levels of phenoloxidase (two orders of magnitude higher PO activity than P. strigosa affected by BBD) and antibacterial activity without significant reduction in unhealthy samples from the mucus layer, indicative of an enhanced immunological response. Results showed that opportunistic bacteria dominated damaged colonies, where six genera of the Bacteroidia class were found with significant changes in unhealthy colonies after DeSeq2 analysis. Nevertheless, histological observations did not support infection of the tissues. The opportunistic overload seems to be contained within the mucus layer but may be associated with the mortality of tissues in a yet unclear way. Future research should focus on experimental infections, the tracking of natural infections, and the immunocompetence of corals in the face of environmental pressures due to local, regional, and global impacts. If environmental deterioration is the primary cause of the continuing emergence and re-emergence of lethal coral diseases, as has been proposed by many authors, the only true option to effectively help preserve the coral reef biodiversity and services, is to restore the environmental quality of reef waters at the local scale and reduce greenhouse gases at the global scale.

19.
Plants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961126

RESUMO

The genus Serratia is widely distributed in soil, water, plants, animals, invertebrates, and humans. Some species of this genus have antifungal, antibacterial, and nematicidal activity. In this work, the nematicidal activity of the endophytic strain of Serratia sp. in chili, Capsicum annuum L., is reported, where at a bacterial concentration of 4 × 109 cel/mL, the penetration of nematodes into the roots significantly decreased by 91 and 55% at 7 and 21 days after inoculation. This bacterial concentration also significantly decreased the number of galls, eggs, egg masses and reproduction factor produced by Nacobbus aberrans in Chili plants, with respect to the control where this bacterial strain was not applied. In the analysis of the genome of the strain, based on average nucleotide identity (ANI), the isolate could be affiliated to the species Serratia ureilytica. The size of the genome is 5.4 Mb, with a 59.3% content of GC. Genes related to the synthesis of chitinases, siderophores, proteases C, serralisins, hemolysin, and serrawettin W2 that have been reported for biocontrol of nematodes were identified in the genome. It is the first report of Serratia ureilytica with nematicidal activity. Based on these results of nematicidal activity, this strain can be evaluated in the field as an alternative in the biocontrol of Nacobbus aberrans in chili cultivation.

20.
Mar Pollut Bull ; 150: 110775, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785844

RESUMO

Marine microbial communities might be subjected to accidental petroleum spills; however, some bacteria can degrade it, making these specific bacteria valuable for bioremediation from petroleum contamination. Thus, characterizing the microbial communities exposed to varying types of petroleum is essential. We evaluated five enriched microbial communities from the northwest Gulf of Mexico (four from the water column and one from sediments). Enrichments were performed using five types of petroleum (extra light, light, medium, heavy and extra heavy), to reveal the microbial succession using a 16S rDNA amplicon approach. Four communities were capable of degrading from extra light to heavy petroleum. However, only the community from sediment was able to degrade the extra heavy petroleum. Successional changes in the microbial communities' structures were specific for each type of petroleum where genus Dietzia, Gordonia, Microvirga, Rhizobium, Paracoccus, Thalassobaculum, Sphingomonas, Moheibacter, Acinetobacter, Pseudohongiella, Porticoccus, Pseudoalteromonas, Pseudomonas, Shewanella, and Planctomyces presented differential abundance between the treatments.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Poluição por Petróleo , Petróleo/metabolismo , Água do Mar/microbiologia , Poluentes da Água/metabolismo , Reatores Biológicos , Sedimentos Geológicos , Golfo do México , Hidrocarbonetos , Filogenia , RNA Ribossômico 16S , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA