Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 16(6): 3233-44, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18166467

RESUMO

Brain dopaminergic system has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression, and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to synthesize N-[2-(4,5-dihydroxyphenyl)-methyl-ethyl]-4,5-dihydroxy-2-aminoindan hydrobromide (3), planned to be a dopamine ligand, and to evaluate its dopaminergic action profile. This compound was assayed as a diastereoisomeric mixture in two experimental models: stereotyped behavior (gnaw) and renal urinary response, after central administration. The pharmacological results showed that compound 3 significantly blocked the apomorphine-induced stereotypy and dopamine-induced diuresis and natriuresis in rats. Thus, compound 3 demonstrated an inhibitory effect on dopaminergic-induced behavior and renal action. N-[2-(-Methyl-ethyl)]-4,5-dihydroxy-2-aminoindan hydrobromide (4) was previously reported as an inotropic agent, and in the present work it was also re-evaluated as a diastereoisomeric mixture for its possible central action on the behavior parameters such as stereotypy and dopamine-induced diuresis and natriuresis in rats. Our results indicate that compound 4 produces an agonistic response, possibly through dopaminergic mechanisms. To better understand the experimental results we performed molecular dynamics simulations of two complexes: compound 3/D(2)DAR (dopamine receptor) and compound 4/D(2)DAR. The differential binding mode obtained for these complexes could explain the antagonist and agonist activity obtained for compounds 3 and 4, respectively.


Assuntos
Agonistas de Dopamina/química , Antagonistas de Dopamina/química , Indanos/química , Indanos/farmacologia , Animais , Apomorfina/farmacologia , Simulação por Computador , Agonistas de Dopamina/síntese química , Antagonistas de Dopamina/síntese química , Indanos/síntese química , Modelos Moleculares , Movimento (Física) , Ligação Proteica , Ratos , Comportamento Estereotipado/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Am J Vet Res ; 68(7): 772-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17605613

RESUMO

OBJECTIVE: To determine serum concentrations of the selected acute-phase proteins (APPs) haptoglobin, serum amyloid A (SAA), and C-reactive protein (CRP) in pigs experimentally inoculated with classical swine fever (CSF) and African swine fever (ASF) viruses. ANIMALS: 8 crossbred (Large White x Landrace) 10-week-old pigs. PROCEDURES: Pigs were allocated to 2 groups (4 pigs/group). One group was inoculated with the CSF virus Alfort 187 strain, whereas the other groupwas inoculated with the ASF virus Spain 70 isolate. Blood samples were collected at various time points. At the end of the study, pigs were euthanized and a complete necropsy was performed, including histologic and immunohistochemical analyses. RESULTS: Serum concentrations of APPs increased in pigs inoculated with CSF and ASF viruses, which suggested an acute-phase response in the course of both diseases. The most noticeable increase in concentration was recorded for SAA in both groups (up to a 300-fold increase for CSF virus and an approx 40-fold increase for ASF virus), followed by CRP and then haptoglobin, which each had only 3- to 4-fold increases. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of APPs increased significantly in pigs inoculated with CSF and ASF viruses. However, differences were evident in serum concentrations of the proteins evaluated in this study.


Assuntos
Proteínas de Fase Aguda/metabolismo , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/imunologia , Febre Suína Africana/sangue , Febre Suína Africana/virologia , Animais , Peste Suína Clássica/sangue , Peste Suína Clássica/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Imuno-Histoquímica/veterinária , Masculino , Suínos
3.
FEBS Lett ; 579(22): 5100-4, 2005 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16139272

RESUMO

Angiotensin II (Ang II) induces a prominent and sustained nitration and activation of ERK1/2 in rat vascular smooth muscle cells, both mediated via AT1 receptor. Nitration and activation was also shown for recombinant non-activated extracellular signal-regulated kinase (ERK) and MEK. Nitration and phosphorylation of ERK1/2 by Ang II was significantly inhibited by NAD(P)H inhibitors and scavengers of oxygen and nitrogen reactive species and completely blocked by a selective inducible nitric-oxide synthase inhibitor. MEK inhibitor U0126 did not affect ERK nitration but completely blocked activation. These data indicate that Ang II nitrates and activates ERK1/2 via a reactive species-sensitive pathway.


Assuntos
Angiotensina II/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Nitratos/metabolismo , Tirosina/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Sequestradores de Radicais Livres/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Molsidomina/análogos & derivados , Molsidomina/metabolismo , Miócitos de Músculo Liso/citologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA