Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(4): 102002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439951

RESUMO

Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39171470

RESUMO

The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.

3.
Med Oncol ; 41(6): 145, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727885

RESUMO

Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Polieletrólitos , Humanos , Polieletrólitos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Medicina de Precisão/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-39037729

RESUMO

Psoriasis, recognized as a chronic inflammatory skin disorder, disrupts immune system functionality. Global estimates by the World Psoriasis Day consortium indicate its impact on approximately 130 million people, constituting 4 to 5 percent of the worldwide population. Conventional drug delivery systems, mainly designed to alleviate psoriasis symptoms, fall short in achieving targeted action and optimal bioavailability due to inherent challenges such as the drug's brief half-life, instability, and a deficiency in ensuring both safety and efficacy. Liposomes, employed in drug delivery systems, emerge as highly promising carriers for augmenting the therapeutic efficacy of topically applied drugs. These small unilamellar vesicles demonstrate enhanced penetration capabilities, facilitating drug delivery through the stratum corneum layer of skin. This comprehensive review article illuminates diverse facets of liposomes as a promising drug delivery system to treat psoriasis. Addressing various aspects such as formulation strategies, encapsulation techniques, and targeted delivery, the review underscores the potential of liposomes in enhancing the efficacy and specificity of psoriasis treatments.

5.
Pharm Nanotechnol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192138

RESUMO

The primary goal of drug formulation is to improve a drug's bioavailability in the body. However, poorly water-soluble drugs present challenging issues related to their solubility and bioavailability factors. Emerging technologies, such as lipid-based drug delivery systems, including micro- or nanoemulsifying drug delivery systems, have become increasingly relevant to address the above challenges. This review presents a thorough overview of self-emulsifying drug delivery systems (SEDDS). It covers the properties, principles, self-emulsification mechanism, formulation strategies, and characterization methods of SEDDS. This review also addresses the delivery of antiviral agents through SEDDS. Moreover, it summarizes the marketed formulations of SEDDS consisting of antiviral agents. This review offers a comprehensive and valuable resource for future perspectives on SEDDS and their potential applications in antiviral drug delivery.

6.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823930

RESUMO

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Assuntos
Amorphophallus , Mananas , Mananas/química , Mananas/isolamento & purificação , Humanos , Amorphophallus/química , Animais , Fibras na Dieta/análise , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Suplementos Nutricionais , Prebióticos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia
7.
EXCLI J ; 22: 880-903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38317861

RESUMO

Phytopharmaceuticals, derived from plants, are increasingly recognized for their potential therapeutic benefits. However, their effectiveness is often hindered by challenges such as poor bioavailability, stability, and targeted delivery. In this study, we aimed to address these limitations by developing PCL (phosphatidylcholine) fortified nano-phytopharmaceuticals to enhance therapeutic efficacy. PCL, a biocompatible and biodegradable polymer, was employed to encapsulate the phytopharmaceuticals, thereby improving their stability and bioavailability. The encapsulation process utilized nanoprecipitation, resulting in the formation of nanoparticles with controlled size and morphology. Various analytical techniques were employed to characterize the physicochemical properties of PCL fortified nano-phytopharmaceuticals, including dynamic light scattering, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Furthermore, the release kinetics of encapsulated phytopharmaceuticals from PCL nanoparticles were evaluated, demonstrating sustained and controlled release profiles, essential for prolonged therapeutic effects. Cytotoxicity studies conducted on in vitro cell culture models confirmed the biocompatibility and non-toxic nature of the developed nano-phytopharmaceuticals. Additionally, in vivo studies were conducted to assess the therapeutic efficacy of PCL fortified nano-phytopharmaceuticals in animal models. The results showIased improved bioavailability, targeted tissue distribution, and enhanced therapeutic effects compared to free phytopharmaceuticals. Moreover, the developed nano-phytopharmaceuticals exhibited prolonged circulation time in the bloodstream, enabling improved drug delivery and reduced dosing frequency. This review highlights the promising potential of PCL fortified nano-phytopharmaceuticals as an effective approach for enhancing the therapeutic efficacy of phytopharmaceuticals. The improved stability, bioavailability, sustained release, and targeted delivery achieved through this formulation strategy offer promising opportunities for advancing plant-based therapies. See also the Graphical abstract(Fig. 1).

8.
Pharmaceutics ; 15(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38140007

RESUMO

Globally, many individuals struggle with Alzheimer's disease (AD), an unrelenting and incapacitating neurodegenerative condition. Despite notable research endeavors, effective remedies for AD remain constrained, prompting the exploration of innovative therapeutic avenues. Within this context, silica-based nanoplatforms have emerged with pronounced potential due to their unique attributes like expansive surface area, customizable pore dimensions, and compatibility with living systems. These nanoplatforms hold promise as prospective interventions for AD. This assessment provides a comprehensive overview encompassing various forms of mesoporous silica nanoparticles (MSNs), techniques for formulation, and their applications in biomedicine. A significant feature lies in their ability to precisely guide and control the transport of therapeutic agents to the brain, facilitated by the adaptability of these nanoplatforms as drug carriers. Their utility as tools for early detection and monitoring of AD is investigated. Challenges and prospects associated with harnessing MSNs are studied, underscoring the imperative of stringent safety evaluations and optimization of how they interact with the body. Additionally, the incorporation of multifunctional attributes like imaging and targeting components is emphasized to enhance their efficacy within the intricate milieu of AD. As the battle against the profound repercussions of AD persists, MSNs emerge as a promising avenue with the potential to propel the development of viable therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA